295 research outputs found
Differential Immune Recognition of LCMV Nucleoprotein and Glycoprotein in Transgenic Mice Expressing LCMV cDNA Genes
AbstractWe have generated doubly transgenic (DT) mice that independently express cDNA genes for the nucleocapsid protein (NP) and the surface glycoproteins (GP) of lymphocytic choriomeningitis virus (LCMV). By RT-PCR, transcription of both transgenes was detected at low levels in brain and kidney but was not observed in the thymus. Additionally, transcription of the GP transgene was observed in the spleen. Following challenge with exogenous LCMV, an anti-NP CTL response was induced in LCMV-infected DT mice, suggesting that nonresponsiveness to NP had not been established. In contrast, LCMV-infected DT mice were nonresponsive to GP and failed to mount any CTL response against GP, either at Day 7 or Day 30 postinfection or following expansion of splenocyte populationsin vitro.A significant number (33%) of adult DT mice survived intracerebral infection with LCMV, suggesting that virus-induced immunopathology in the central nervous system can be diminished by combined expression of the transgenes whereas no protective effect was conferred on singly transgenic mice, expressing NP or GP alone. The DT mice therefore create a novel host genetic background for comparative studies of the anti-LCMV immune responses relative to parental C57Bl/6 mice
Flow Diagnostics and the Acoustic Behavior of a Fan-and-Coil Assembly
Project 84 concentrated on understanding the noise generating mechanisms of axial-flow
fans with the intent of proposing methods of component design and system assembly by
which noise generation is reduced or minimized. The project focused on the fan-coil unit
typical to room air conditioners and many split-system applications.
This report presents the accomplishments of the project, including the design,
construction, and qualification of an anechoic chamber, the acquisition of acoustic, flow,
and pressure data within a fan-coil unit over a typical operating range, and the
development of an understanding of the flow-structure interactions responsible for noise
generation in the fan-coil unit.
This report focuses on the investigation of a method for measuring the dynamic axial
force generated by a fan operating in a steady but spatially non-uniform flow field.
Several variations of a measurement system that uses a cantilever beam were tested.
Experimental results indicated, in all designs, that the measurement system introduced
additional sources of axial motion, occurring at the frequencies of interest and at
amplitudes much larger than the one to be measured. Recommendations for future work
are given.Air Conditioning and Refrigeration Project 8
Probing the Higgs Field Using Massive Particles as Sources and Detectors
In the Standard Model, all massive elementary particles acquire their masses
by coupling to a background Higgs field with a non-zero vacuum expectation
value. What is often overlooked is that each massive particle is also a source
of the Higgs field. A given particle can in principle shift the mass of a
neighboring particle. The mass shift effect goes beyond the usual perturbative
Feynman diagram calculations which implicitly assume that the mass of each
particle is rigidly fixed. Local mass shifts offer a unique handle on Higgs
physics since they do not require the production of on-shell Higgs bosons. We
provide theoretical estimates showing that the mass shift effect can be large
and measurable, especially near pair threshold, at both the Tevatron and the
LHC.Comment: 6 pages, no figures; Version 2 corrects some typographical errors of
factors of 2 in equations 14, 17, 18 and 19 (all of the same origin) and
mentions a linear collider as an interesting place to test the results of
this pape
Nuclear shadowing at low Q^2
We re-examine the role of vector meson dominance in nuclear shadowing at low
Q^2. We find that models which incorporate both vector meson and partonic
mechanisms are consistent with both the magnitude and the Q^2 slope of the
shadowing data.Comment: 7 pages, 2 figures; to appear in Phys. Rev.
Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys
Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and
Applications" to be published in the series Springer Lecture Notes on Physics,
P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical
work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals
and Applications" to be published in the series Springer Lecture Notes on
Physics, P. H. Dederichs and I. Galanakis (eds
Frequency behavior of Raman coupling coefficient in glasses
Low-frequency Raman coupling coefficient of 11 different glasses is
evaluated. It is found that the coupling coefficient demonstrates a universal
linear frequency behavior near the boson peak maximum and a superlinear
behavior at very low frequencies. The last observation suggests vanishing of
the coupling coefficient when frequency tends to zero. The results are
discussed in terms of the vibration wavefunction that combines features of
localized and extended modes.Comment: 8 pages, 9 figure
Two-body decays in the minimal 331 model
The two-body decays of the extra neutral boson Z_2 predicted by the minimal
331 model are analyzed. At the three-level it can decay into standard model
particles as well as exotic quarks and the new gauge bosons predicted by the
model. The decays into a lepton pair are strongly suppressed, with and . In the bosonic
sector, Z_2 would decay mainly into a pair of bilepton gauge bosons, with a
branching ratio below the 0.1 level. The Z_2 boson has thus a leptophobic and
bileptophobic nature and it would decay dominantly into quark pairs. The
anomaly-induced decays and , which occurs
at the one-loop level are studied. It is found that and at most. As for the and decays, with H a relatively light Higgs boson, they
are induced via Z'-Z mixing. It is obtained that
and . We also examine the flavor changing neutral
current decays and , which may have branching
fractions as large as and , respectively, and thus may be of
phenomenological interest.Comment: 14 pages, 3 figures, submitted to Physical Review
Family practitioners' top medical priorities when managing patients with multimorbidity: a cross-sectional study.
Managing multiple chronic and acute conditions in patients with multimorbidity requires setting medical priorities. How family practitioners (FPs) rank medical priorities between highly, moderately, or rarely prevalent chronic conditions (CCs) has never been described. The authors hypothesised that there was no relationship between the prevalence of CCs and their medical priority ranking in individual patients with multimorbidity.
To describe FPs' medical priority ranking of conditions relative to their prevalence in patients with multimorbidity.
This cross-sectional study of 100 FPs in Switzerland included patients with ≥3 CCs on a predefined list of 75 items from the International Classification of Primary Care 2 (ICPC-2); other conditions could be added. FPs ranked all conditions by their medical priority.
Priority ranking and distribution were calculated for each condition separately and for the top three priorities together.
The sample contained 888 patients aged 28-98 years (mean 73), of which 48.2% were male. Included patients had 3-19 conditions (median 7; interquantile range [IQR] 6-9). FPs used 74/75 CCs from the predefined list, of which 27 were highly prevalent (>5%). In total, 336 different conditions were recorded. Highly prevalent CCs were only the top medical priority in 66%, and the first three priorities in 33%, of cases. No correlation was found between prevalence and the ranking of medical priorities.
FPs faced a great diversity of different conditions in their patients with multimorbidity, with nearly every condition being found at nearly every rank of medical priority, depending on the patient. Medical priority ranking was independent of the prevalence of CCs
Primordial Nucleosynthesis Constraints on Z' Properties
In models involving new TeV-scale Z' gauge bosons, the new U(1)' symmetry
often prevents the generation of Majorana masses needed for a conventional
neutrino seesaw, leading to three superweakly interacting ``right-handed''
neutrinos nu_R, the Dirac partners of the ordinary neutrinos. These can be
produced prior to big bang nucleosynthesis by the Z' interactions, leading to a
faster expansion rate and too much ^4He. We quantify the constraints on the Z'
properties from nucleosynthesis for Z' couplings motivated by a class of E_6
models parametrized by an angle theta_E6. The rate for the annihilation of
three approximately massless right-handed neutrinos into other particle pairs
through the Z' channel is calculated. The decoupling temperature, which is
higher than that of ordinary left-handed neutrinos due to the large Z' mass, is
evaluated, and the equivalent number of new doublet neutrinos Delta N_nu is
obtained numerically as a function of the Z' mass and couplings for a variety
of assumptions concerning the Z-Z' mixing angle and the quark-hadron transition
temperature T_c. Except near the values of theta_E6 for which the Z' decouples
from the right-handed neutrinos, the Z' mass and mixing constraints from
nucleosynthesis are much more stringent than the existing laboratory limits
from searches for direct production or from precision electroweak data, and are
comparable to the ranges that may ultimately be probed at proposed colliders.
For the case T_c = 150 MeV with the theoretically favored range of Z-Z'
mixings, Delta N_nu 4.3 TeV for any value of theta_E6. Larger
mixing or larger T_c often lead to unacceptably large Delta N_nu except near
the nu_R decoupling limit.Comment: 22 pages, 5 figures; two additional references adde
The Weak Charge of the Proton and New Physics
We address the physics implications of a precision determination of the weak
charge of the proton, QWP, from a parity violating elastic electron proton
scattering experiment to be performed at the Jefferson Laboratory. We present
the Standard Model (SM) expression for QWP including one-loop radiative
corrections, and discuss in detail the theoretical uncertainties and missing
higher order QCD corrections. Owing to a fortuitous cancellation, the value of
QWP is suppressed in the SM, making it a unique place to look for physics
beyond the SM. Examples include extra neutral gauge bosons, supersymmetry, and
leptoquarks. We argue that a QWP measurement will provide an important
complement to both high energy collider experiments and other low energy
electroweak measurements. The anticipated experimental precision requires the
knowledge of the order alpha_s corrections to the pure electroweak box
contributions. We compute these contributions for QWP, as well as for the weak
charges of heavy elements as determined from atomic parity violation.Comment: 22 pages of LaTeX, 5 figure
- …