766 research outputs found

    Nonlinear dynamos at infinite magnetic Prandtl number

    Full text link
    The dynamo instability is investigated in the limit of infinite magnetic Prandtl number. In this limit the fluid is assumed to be very viscous so that the inertial terms can be neglected and the flow is slaved to the forcing. The forcing consist of an external forcing function that drives the dynamo flow and the resulting Lorentz force caused by the back reaction of the magnetic field. The flows under investigation are the Archontis flow, and the ABC flow forced at two different scales. The investigation covers roughly three orders of magnitude of the magnetic Reynolds number above onset. All flows show a weak increase of the averaged magnetic energy as the magnetic Reynolds number is increased. Most of the magnetic energy is concentrated in flat elongated structures that produce a Lorentz force with small solenoidal projection so that the resulting magnetic field configuration was almost force-free. Although the examined system has zero kinetic Reynolds number at sufficiently large magnetic Reynolds number the structures are unstable to small scale fluctuations that result in a chaotic temporal behavior

    Vacuum shell in the Schwarzschild-de Sitter world

    Full text link
    We construct the classification scheme for all possible evolution scenarios and find the corresponding global geometries for dynamics of a thin spherical vacuum shell in the Schwarzschild-de Sitter metric. This configuration is suitable for the modelling of vacuum bubbles arising during cosmological phase transitions in the early Universe. The distinctive final types of evolution from the local point of view of a rather distant observer are either the unlimited expansion of the shell or its contraction with a formation of black hole (with a central singularity) or wormhole (with a baby universe in interior).Comment: 15 pages, 8 figure

    Atomic Collapse and Quasi-Rydberg States in Graphene

    Get PDF
    Charge impurities in graphene can host an infinite family of Rydberg-like resonance states of massless Dirac particles. These states, appearing for supercritical charge, are described by Bohr-Sommerfeld quantization of collapsing classical trajectories that descend on point charge, in analogy to Rydberg states relation with planetary orbits. We argue that divalent and trivalent charge impurities in graphene is an ideal system for realization of this atomic collapse regime. Strong coupling of these states to the Dirac continuum via Klein tunneling leads to striking resonance effects with direct signatures in transport, local properties and enhancement of the Kondo effect.Comment: 5 pages, 4 figure

    Creation of Dirac Particles in the Presence of a Constant Electric Field in an Anisotropic Bianchi I Universe

    Get PDF
    In this article we compute the density of Dirac particles created by a cosmological anisotropic Bianchi I universe in the presence of a constant electric field. We show that the particle distribution becomes thermal when one neglects the electric interaction.Comment: 9 page

    Gravitational mechanisms to self-tune the cosmological constant: obstructions and ways forward

    Get PDF
    Gravitational models of self-tuning are those in which vacuum energy has no observable effect on spacetime curvature, even though it is a priori unsuppressed below the cut-off. We complement Weinberg's no go theorem by studying field theoretic completions of self-adjustment allowing for broken translations as well as other generalisations, and identify new obstructions. Our analysis uses a very general Källén-Lehmann spectral representation of the exchange amplitude for conserved sources of energy-momentum and exploits unitarity and Lorentz invariance to show that a transition from self-tuning of long wavelength sources to near General Relativity on shorter scales is generically not possible. We search for novel ways around our obstructions and highlight two interesting possibilities. The first is an example of a unitary field configuration on anti-de Sitter space with the desired transition from self-tuning to GR. A second example is motivated by vacuumenergy sequestering

    Zeldovich flow on cosmic vacuum background: new exact nonlinear analytical solution

    Get PDF
    A new exact nonlinear Newtonian solution for a plane matter flow superimposed on the isotropic Hubble expansion is reported. The dynamical effect of cosmic vacuum is taken into account. The solution describes the evolution of nonlinear perturbations via gravitational instability of matter and the termination of the perturbation growth by anti-gravity of vacuum at the epoch of transition from matter domination to vacuum domination. On this basis, an `approximate' 3D solution is suggested as an analog of the Zeldovich ansatz.Comment: 9 pages, 1 figure

    Vacuum Polarization and Screening of Supercritical Impurities in Graphene

    Full text link
    Screening of charge impurities in graphene is analyzed using the exact solution for vacuum polarization obtained from the massless Dirac-Kepler problem. For the impurity charge below certain critical value no density perturbation is found away from the impurity, in agreement with the linear response theory result. For supercritical charge, however, the polarization distribution is shown to have a power law profile, leading to screening of the excess charge at large distances. The Dirac-Kepler scattering states give rise to standing wave oscillations in the local density of states which appear and become prominent in the supercritical regime.Comment: 5 pages, 2 figure

    Elastic scattering theory and transport in graphene

    Full text link
    Electron properties of graphene are described in terms of Dirac fermions. Here we thoroughly outline the elastic scattering theory for the two-dimensional massive Dirac fermions in the presence of an axially symmetric potential. While the massless limit is relevant for pristine graphene, keeping finite mass allows for generalizations onto situations with broken symmetry between the two sublattices, and provides a link to the scattering theory of electrons in a parabolic band. We demonstrate that the Dirac theory requires short-distance regularization for potentials which are more singular than 1/r. The formalism is then applied to scattering off a smooth short-ranged potential. Next we consider the Coulomb potential scattering, where the Dirac theory is consistent for a point scatterer only for the effective impurity strength below 1/2. From the scattering phase shifts we obtain the exact Coulomb transport cross-section in terms of the impurity strength. The results are relevant for transport in graphene in the presence of impurities that do not induce scattering between the Dirac points in the Brillouin zone.Comment: 17 pages, 4 figures. Published versio

    Entropy, Contact Interaction with Horizon and Dark Energy

    Full text link
    We present some arguments suggesting that the mismatch between Bekenstein- Hawking entropy and the entropy of entanglement for vector fields is due to the same gauge configurations which saturate the contact term in topological susceptibility in QCD. In both cases the extra term with a "wrong sign" is due to distinct topological sectors in gauge theories. This extra term has non-dispersive nature, can not be restored from conventional spectral function through dispersion relations, and can not be associated with any physical propagating degrees of freedom. We make few comments on some profound consequences of our findings. In particular, we speculate that the source of the observed dark energy may also be related to the same type of gauge configurations which are responsible for the mismatch between black hole entropy and the entropy of entanglement in the presence of causal horizon.Comment: final version to appear in Phys. Rev. D (2011

    Critical nucleus charge in a superstrong magnetic field: effect of screening

    Full text link
    A superstrong magnetic field stimulates the spontaneous production of positrons by naked nuclei by diminishing the value of the critical charge Z_{cr} . The phenomenon of screening of the Coulomb potential by a superstrong magnetic field which has been discovered recently acts in the opposite direction and prevents the nuclei with Z52 for a nucleus to become critical stronger B are needed than without taking screening into account.Comment: 13 pages, 2 figures, version to be published in Physical Review
    corecore