141 research outputs found

    Characterisation of nasal devices for delivery of insulin to the brain and evaluation in humans using functional magnetic resonance imaging

    Get PDF
    This study aimed to characterise three nasal drug delivery devices to evaluate their propensity to deliver human insulin solutions to the nasal cavity for redistribution to the central nervous system. Brain delivery was evaluated using functional magnetic resonance imaging to measure regional cerebral blood flow. Intranasal insulin administration has been hypothesised to exploit nose-to-brain pathways and deliver drug directly to the brain tissue whilst limiting systemic exposure. Three nasal pump-actuator configurations were compared for delivery of 400 IU/mL insulin solution by measuring droplet size distribution, plume geometry, spray pattern and in vitro deposition in a nasal cast. The device with optimal spray properties for nose to brain delivery (spray angle between 30° and 45°; droplet size between 20 and 50 μm) also favoured high posterior-superior deposition in the nasal cast and was utilised in a pharmacological magnetic resonance imaging study. Functional magnetic resonance imaging in healthy male volunteers showed statistically significant decreases in regional cerebral blood flow within areas dense in insulin receptors (bilateral amygdala) in response to intranasally administered insulin (160 IU) compared to saline (control). These changes correspond to the expected effects of insulin in the brain and were achieved using a simple nasal spray device and solution formulation. We recommend that a thorough characterisation of nasal delivery devices and qualitative/quantitative assessment of the administered dose is reported in all studies of nose to brain delivery so that responses can be evaluated with respect to posology and comparison between studies is facilitated

    Cerebral blood flow predicts differential neurotransmitter activity

    Get PDF
    Application of metabolic magnetic resonance imaging measures such as cerebral blood flow in translational medicine is limited by the unknown link of observed alterations to specific neurophysiological processes. In particular, the sensitivity of cerebral blood flow to activity changes in specific neurotransmitter systems remains unclear. We address this question by probing cerebral blood flow in healthy volunteers using seven established drugs with known dopaminergic, serotonergic, glutamatergic and GABAergic mechanisms of action. We use a novel framework aimed at disentangling the observed effects to contribution from underlying neurotransmitter systems. We find for all evaluated compounds a reliable spatial link of respective cerebral blood flow changes with underlying neurotransmitter receptor densities corresponding to their primary mechanisms of action. The strength of these associations with receptor density is mediated by respective drug affinities. These findings suggest that cerebral blood flow is a sensitive brain-wide in-vivo assay of metabolic demands across a variety of neurotransmitter systems in humans

    KOSMOS and COSMOS: New facility instruments for the NOAO 4-meter telescopes

    Full text link
    We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for the 4-m Blanco telescope. These nearly identical imaging spectrographs are modified versions of the OSMOS instrument; they provide a pair of new, high-efficiency instruments to the NOAO user community. KOSMOS and COSMOS may be used for imaging, long-slit, and multi-slit spectroscopy over a 100 square arcminute field of view with a pixel scale of 0.29 arcseconds. Each contains two VPH grisms that provide R~2500 with a one arcsecond slit and their wavelengths of peak diffraction efficiency are approximately 510nm and 750nm. Both may also be used with either a thin, blue-optimized CCD from e2v or a thick, fully depleted, red-optimized CCD from LBNL. These instruments were developed in response to the ReSTAR process. KOSMOS was commissioned in 2013B and COSMOS was commissioned in 2014A.Comment: SPIE 2014 Astronomical Telescopes + Instrumentation, Proc. SPIE 9147-3

    Relation of IL28B Gene Polymorphism with Biochemical and Histological Features in Hepatitis C Virus-Induced Liver Disease

    Get PDF
    BACKGROUND/AIMS: Polymorphism at the IL28B gene may modify the course of hepatitis C virus (HCV) chronic infection. Our aim was to study the influence of IL28B rs12979860 gene polymorphism on the biochemistry and pathology of HCV-induced disease in the clinical course from mild chronic hepatitis C to hepatocellular carcinoma. METHODS: We have determined the rs12979860 single nucleotide polymorphism (SNP) upstream IL28B gene in two groups of patients with HCV-induced chronic liver disease: 1) 268 patients (159 men) with biopsy-proven chronic hepatitis C, to analyse its relation with biochemical, virological and histological features; and 2) 134 patients (97 men) with HCV-related hepatocellular carcinoma. The distribution of the analysed SNP in hepatocellular carcinoma patients was compared with that found in untreated chronic hepatitis C patients. All patients were white and most were Spaniards. RESULTS: In multivariate analysis ALT values were higher (P = 0.001) and GGT values were lower (P<0.001) in chronic hepatitis C patients homozygotes for the major rs12979860C allele as compared with carriers of the mutated rs12979860T allele. Steatosis was more frequent (Odds ratio = 1.764, 95% C.I. 1.053-2.955) and severe (P = 0.026) in carriers of the rs12979860T allele. No relation was found between the analysed SNP and METAVIR scores for necroinflammation and fibrosis, and there were no differences in the distribution of the analysed SNP between hepatocellular carcinoma and untreated chronic hepatitis C patients. CONCLUSION: The IL28B rs12979860 polymorphism correlates with the biochemical activity and the presence and severity of liver steatosis in chronic hepatitis C

    Prognostic gene expression signature for high-grade serous ovarian cancer.

    Get PDF
    BACKGROUND: Median overall survival (OS) for women with high-grade serous ovarian cancer (HGSOC) is ∼4 years, yet survival varies widely between patients. There are no well-established, gene expression signatures associated with prognosis. The aim of this study was to develop a robust prognostic signature for OS in patients with HGSOC. PATIENTS AND METHODS: Expression of 513 genes, selected from a meta-analysis of 1455 tumours and other candidates, was measured using NanoString technology from formalin-fixed paraffin-embedded tumour tissue collected from 3769 women with HGSOC from multiple studies. Elastic net regularization for survival analysis was applied to develop a prognostic model for 5-year OS, trained on 2702 tumours from 15 studies and evaluated on an independent set of 1067 tumours from six studies. RESULTS: Expression levels of 276 genes were associated with OS (false discovery rate \u3c 0.05) in covariate-adjusted single-gene analyses. The top five genes were TAP1, ZFHX4, CXCL9, FBN1 and PTGER3 (P \u3c 0.001). The best performing prognostic signature included 101 genes enriched in pathways with treatment implications. Each gain of one standard deviation in the gene expression score conferred a greater than twofold increase in risk of death [hazard ratio (HR) 2.35, 95% confidence interval (CI) 2.02-2.71; P \u3c 0.001]. Median survival [HR (95% CI)] by gene expression score quintile was 9.5 (8.3 to -), 5.4 (4.6-7.0), 3.8 (3.3-4.6), 3.2 (2.9-3.7) and 2.3 (2.1-2.6) years. CONCLUSION: The OTTA-SPOT (Ovarian Tumor Tissue Analysis consortium - Stratified Prognosis of Ovarian Tumours) gene expression signature may improve risk stratification in clinical trials by identifying patients who are least likely to achieve 5-year survival. The identified novel genes associated with the outcome may also yield opportunities for the development of targeted therapeutic approaches

    Prognostic gene expression signature for high-grade serous ovarian cancer

    Get PDF
    BACKGROUND:Median overall survival (OS) for women with high-grade serous ovarian cancer (HGSOC) is ∼4 years, yet survival varies widely between patients. There are no well-established, gene expression signatures associated with prognosis. The aim of this study was to develop a robust prognostic signature for OS in patients with HGSOC. PATIENTS AND METHODS:Expression of 513 genes, selected from a meta-analysis of 1455 tumours and other candidates, was measured using NanoString technology from formalin-fixed paraffin-embedded tumour tissue collected from 3769 women with HGSOC from multiple studies. Elastic net regularization for survival analysis was applied to develop a prognostic model for 5-year OS, trained on 2702 tumours from 15 studies and evaluated on an independent set of 1067 tumours from six studies. RESULTS:Expression levels of 276 genes were associated with OS (false discovery rate &lt; 0.05) in covariate-adjusted single-gene analyses. The top five genes were TAP1, ZFHX4, CXCL9, FBN1 and PTGER3 (P &lt; 0.001). The best performing prognostic signature included 101 genes enriched in pathways with treatment implications. Each gain of one standard deviation in the gene expression score conferred a greater than twofold increase in risk of death [hazard ratio (HR) 2.35, 95% confidence interval (CI) 2.02-2.71; P &lt; 0.001]. Median survival [HR (95% CI)] by gene expression score quintile was 9.5 (8.3 to -), 5.4 (4.6-7.0), 3.8 (3.3-4.6), 3.2 (2.9-3.7) and 2.3 (2.1-2.6) years. CONCLUSION:The OTTA-SPOT (Ovarian Tumor Tissue Analysis consortium - Stratified Prognosis of Ovarian Tumours) gene expression signature may improve risk stratification in clinical trials by identifying patients who are least likely to achieve 5-year survival. The identified novel genes associated with the outcome may also yield opportunities for the development of targeted therapeutic approaches

    Differential Extinction and the Contrasting Structure of Polar Marine Faunas

    Get PDF
    Background: The low taxonomic diversity of polar marine faunas today reflects both the failure of clades to colonize or diversify in high latitudes and regional extinctions of once-present clades. However, simple models of polar evolution are made difficult by the strikingly different faunal compositions and community structures of the two poles. Methodology/Principal Findings: A comparison of early Cenozoic Arctic and Antarctic bivalve faunas with modern ones, within the framework of a molecular phylogeny, shows that while Arctic losses were randomly distributed across the tree, Antarctic losses were significantly concentrated in more derived families, resulting in communities dominated by basal lineages. Potential mechanisms for the phylogenetic structure to Antarctic extinctions include continental isolation, changes in primary productivity leading to turnover of both predators and prey, and the effect of glaciation on shelf habitats. Conclusions/Significance: These results show that phylogenetic consequences of past extinctions can vary substantially among regions and thus shape regional faunal structures, even when due to similar drivers, here global cooling, and provide the first phylogenetic support for the ‘‘retrograde’ ’ hypothesis of Antarctic faunal evolution

    Frontal GABA Levels Change during Working Memory

    Get PDF
    Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing
    • …
    corecore