50 research outputs found

    Clonal Interactions in Barrett’s Carcinogenesis.

    Get PDF
    PhDIntroduction: Barrett’s oesophagus (BO) is a metaplastic premalignant disease which can undergo a metaplasia-­‐dysplasia-­‐adenocarcinoma pathway. It represents an example of field cancerization by which an area occupied by BO can undergo molecular and genetic changes associated with carcinogenesis without being phenotypically cancerous. Previous work suggested that non-­‐cancerous BO contains a monoclonal population. More recent work demonstrated that premalignant Barrett’s fields are polyclonal suggesting that clonal interactions may be important in carcinogenesis. It is the aim of this thesis to further investigate clonal interactions in BO by understanding the effects of therapy in altering the relationships of clonal populations in BO, by assessing the relationship of clonal populations in dysplasia as compared with the associated cancer, and by attempting to elucidate a potential molecular mechanism of clonal interactions. Results: The overall results can be summarised as follows: 1.Premalignant clonal populations are well mixed allowing for clonal interactions. However, the adenocarcinoma associated with high grade dysplasia is monoclonal and derived from clonal populations found in the dysplasia, indicating possible clonal interactions during carcinogenesis. 2. Patients with persistent disease after endoscopy retain the same clonal populations. However, the clonal populations of recurrent disease changes such that new clonal populations arise or may benefit from the extinction of others. 3. These clonal populations may be derived from deep submucosal glands or may be found in phenotypically normal squamous epithelium indicating a common stem cell origin. 4. A possible mechanism of clonal interaction may be the senescence associated secretory phenotype: senescence is abundant in BO and can cause proliferation in neighbouring cells in vitro. Conclusion: This thesis has investigated the implications of clonal interactions in BO. The demonstration of temporal clonal heterogeneity as a result of endoscopic therapy, as well as spatial clonal heterogeneity possibly resulting in carcinogenesis, asks for a mechanistic explanation of clonal interactions. The consequences of senescence may well provide one such mechanism.Derek Butler Trust; CORE Digestive Diseases Charity, Grant Number: TBYG1J3R

    The stem cell organisation, and the proliferative and gene expression profile of Barrett's epithelium, replicates pyloric-type gastric glands

    Get PDF
    Objective: Barrett's oesophagus shows appearances described as ‘intestinal metaplasia’, in structures called ‘crypts’ but do not typically display crypt architecture. Here, we investigate their relationship to gastric glands. Methods: Cell proliferation and migration within Barrett's glands was assessed by Ki67 and iododeoxyuridine (IdU) labelling. Expression of mucin core proteins (MUC), trefoil family factor (TFF) peptides and LGR5 mRNA was determined by immunohistochemistry or by in situ hybridisation, and clonality was elucidated using mitochondrial DNA (mtDNA) mutations combined with mucin histochemistry. Results: Proliferation predominantly occurs in the middle of Barrett's glands, diminishing towards the surface and the base: IdU dynamics demonstrate bidirectional migration, similar to gastric glands. Distribution of MUC5AC, TFF1, MUC6 and TFF2 in Barrett's mirrors pyloric glands and is preserved in Barrett's dysplasia. MUC2-positive goblet cells are localised above the neck in Barrett's glands, and TFF3 is concentrated in the same region. LGR5 mRNA is detected in the middle of Barrett's glands suggesting a stem cell niche in this locale, similar to that in the gastric pylorus, and distinct from gastric intestinal metaplasia. Gastric and intestinal cell lineages within Barrett's glands are clonal, indicating derivation from a single stem cell. Conclusions: Barrett's shows the proliferative and stem cell architecture, and pattern of gene expression of pyloric gastric glands, maintained by stem cells showing gastric and intestinal differentiation: neutral drift may suggest that intestinal differentiation advances with time, a concept critical for the understanding of the origin and development of Barrett's oesophagus

    Processing emotion from abstract art in frontotemporal lobar degeneration

    Get PDF
    Abstract art may signal emotions independently of a biological or social carrier: it might therefore constitute a test case for defining brain mechanisms of generic emotion decoding and the impact of disease states on those mechanisms. This is potentially of particular relevance to diseases in the frontotemporal lobar degeneration (FTLD) spectrum. These diseases are often led by emotional impairment despite retained or enhanced artistic interest in at least some patients. However, the processing of emotion from art has not been studied systematically in FTLD. Here we addressed this issue using a novel emotional valence matching task on abstract paintings in patients representing major syndromes of FTLD (behavioural variant frontotemporal dementia, n=11; sematic variant primary progressive aphasia (svPPA), n=7; nonfluent variant primary progressive aphasia (nfvPPA), n=6) relative to healthy older individuals (n=39). Performance on art emotion valence matching was compared between groups taking account of perceptual matching performance and assessed in relation to facial emotion matching using customised control tasks. Neuroanatomical correlates of art emotion processing were assessed using voxel-based morphometry of patients' brain MR images. All patient groups had a deficit of art emotion processing relative to healthy controls; there were no significant interactions between syndromic group and emotion modality. Poorer art emotion valence matching performance was associated with reduced grey matter volume in right lateral occopitotemporal cortex in proximity to regions previously implicated in the processing of dynamic visual signals. Our findings suggest that abstract art may be a useful model system for investigating mechanisms of generic emotion decoding and aesthetic processing in neurodegenerative diseases

    A comparative analysis of whole genome sequencing of esophageal adenocarcinoma pre- and post-chemotherapy

    Get PDF
    The scientific community has avoided using tissue samples from patients that have been exposed to systemic chemotherapy to infer the genomic landscape of a given cancer. Esophageal adenocarcinoma is a heterogeneous, chemoresistant tumor for which the availability and size of pretreatment endoscopic samples are limiting. This study compares whole-genome sequencing data obtained from chemo-naive and chemo-treated samples. The quality of whole-genomic sequencing data is comparable across all samples regardless of chemotherapy status. Inclusion of samples collected post-chemotherapy increased the proportion of late-stage tumors. When comparing matched pre- and post-chemotherapy samples from 10 cases, the mutational signatures, copy number, and SNV mutational profiles reflect the expected heterogeneity in this disease. Analysis of SNVs in relation to allele-specific copy-number changes pinpoints the common ancestor to a point prior to chemotherapy. For cases in which pre- and post-chemotherapy samples do show substantial differences, the timing of the divergence is near-synchronous with endoreduplication. Comparison across a large prospective cohort (62 treatment-naive, 58 chemotherapy-treated samples) reveals no significant differences in the overall mutation rate, mutation signatures, specific recurrent point mutations, or copy-number events in respect to chemotherapy status. In conclusion, whole-genome sequencing of samples obtained following neoadjuvant chemotherapy is representative of the genomic landscape of esophageal adenocarcinoma. Excluding these samples reduces the material available for cataloging and introduces a bias toward the earlier stages of cancer.This study was partly funded by a project grant from Cancer Research UK. R.C.F. is funded by an NIHR Professorship and receives core funding from the Medical Research Council and infrastructure support from the Biomedical Research Centre and the Experimental Cancer Medicine Centre. We acknowledge the support of The University of Cambridge, Cancer Research UK (C14303/A17197) and Hutchison Whampoa Limited

    An obstructing mass in a young ulcerative colitis patient

    No full text
    We present a case of a 19-year-old female who developed subacute obstruction due to giant inflammatory polyps, having undergone treatment for left-sided ulcerative colitis. This is followed by a review of the literature
    corecore