3 research outputs found

    Supporting Pharmacovigilance Signal Validation and Prioritization with Analyses of Routinely Collected Health Data: Lessons Learned from an EHDEN Network Study

    Get PDF
    Introduction: Individual case reports are the main asset in pharmacovigilance signal management. Signal validation is the first stage after signal detection and aims to determine if there is sufficient evidence to justify further assessment. Throughout signal management, a prioritization of signals is continually made. Routinely collected health data can provide relevant contextual information but are primarily used at a later stage in pharmacoepidemiological studies to assess communicated signals. Objective: The aim of this study was to examine the feasibility and utility of analysing routine health data from a multinational distributed network to support signal validation and prioritization and to reflect on key user requirements for these analyses to become an integral part of this process. Methods: Statistical signal detection was performed in VigiBase, the WHO global database of individual case safety reports, targeting generic manufacturer drugs and 16 prespecified adverse events. During a 5-day study-a-thon, signal validation and prioritization were performed using information from VigiBase, regulatory documents and the scientific literature alongside descriptive analyses of routine health data from 10 partners of the European Health Data and Evidence Network (EHDEN). Databases included in the study were from the UK, Spain, Norway, the Netherlands and Serbia, capturing records from primary care and/or hospitals. Results: Ninety-five statistical signals were subjected to signal validation, of which eight were considered for descriptive analyses in the routine health data. Design, execution and interpretation of results from these analyses took up to a few hours for each signal (of which 15–60 minutes were for execution) and informed decisions for five out of eight signals. The impact of insights from the routine health data varied and included possible alternative explanations, potential public health and clinical impact and feasibility of follow-up pharmacoepidemiological studies. Three signals were selected for signal assessment, two of these decisions were supported by insights from the routine health data. Standardization of analytical code, availability of adverse event phenotypes including bridges between different source vocabularies, and governance around the access and use of routine health data were identified as important aspects for future development. Conclusions: Analyses of routine health data from a distributed network to support signal validation and prioritization are feasible in the given time limits and can inform decision making. The cost–benefit of integrating these analyses at this stage of signal management requires further research

    Safety Concerns Reported by Patients Identified in a Collaborative Signal Detection Workshop using VigiBase : Results and Reflections from Lareb and Uppsala Monitoring Centre

    No full text
    Introduction: Patient reporting in pharmacovigilance is important and contributes to signal detection. However, descriptions of methodologies for using patient reports in signal detection are scarce, and published experiences of how patient reports are used in pharmacovigilance are limited to a few individual countries. Objective: Our objective was to explore the contribution of patient reports to global signal detection in VigiBase. Methods Data were retrieved from VigiBase in September 2016. Drug-event-combination series were restricted to those with[50% patient reports, defined as reporter type "Consumer/non-health professional'' per E2B reporting standard. vigiRank was applied to patient reports to prioritize combinations for assessment. Product information for healthcare professionals (HCPs) as well as patient information leaflets (PILs) were used as reference for information on adverse drug reactions (ADRs). Staff from the Uppsala Monitoring Centre and the Netherlands Pharmacovigilance Centre Lareb categorized the combinations. Potential signals proceeded to a more in-depth clinical review to determine whether the safety concern should be communicated as a "signal.'' Results: Of the 212 combinations assessed, 20 (9%) resulted in eight signals communicated within the World Health Organization (WHO) programme for international drug monitoring. Review of PILs revealed insufficient ADR descriptions for patients and examples of poor consistency with product information for HCPs. Patient narratives provided details regarding the experience and impact of ADRs and evidence that patients make causality and personal risk assessments. Conclusions: Safety concerns described in patient reports can be identified in a global database including previously unknown ADRs as well as new aspects of known ADRs. Patient reports provide unique information valuable in signal assessment and should be included in signal detection. Novel approaches to highlighting patient reports in statistical signal detection can further improve the contribution of patient reports to pharmacovigilance
    corecore