137 research outputs found

    The Herbal Drug Melampyrum pratense

    Get PDF
    Melampyrum pratense L. (Koch) is used in traditional Austrian medicine for the treatment of different inflammation-related conditions. In this work, we show that the extracts of M. pratense stimulated peroxisome proliferator-activated receptors- (PPARs-)α and -γ that are well recognized for their anti-inflammatory activities. Furthermore, the extract inhibited the activation of the proinflammatory transcription factor NF-κB and induction of its target genes interleukin-8 (IL-8) and E-selectin in vitro. Bioassay-guided fractionation identified several active flavonoids and iridoids including melampyroside and mussaenoside and the phenolic compound lunularin that were identified in this species for the first time. The flavonoids apigenin and luteolin were distinguished as the main components accountable for the anti-inflammatory properties. Apigenin and luteolin effectively inhibited tumor necrosis factor α (TNF-α)-induced NF-κB-mediated transactivation of a luciferase reporter gene. Furthermore, the two compounds dose-dependently reduced IL-8 and E-selectin protein expression after stimulation with lipopolysaccharide (LPS) or TNF-α in endothelial cells (ECs). The iridoids melampyroside and mussaenoside prevented the elevation of E-selectin in LPS-stimulated ECs. Lunularin was found to reduce the protein levels of the proinflammatory mediators E-selectin and IL-8 in ECs in response to LPS. These data validate the ethnomedical use of M. pratense for the treatment of inflammatory conditions and point to the constituents accountable for its anti-inflammatory activity

    Low-Affinity/High-Selectivity Dopamine Transport Inhibition Sufficient to Rescue Cognitive Functions in the Aging Rat

    Get PDF
    The worldwide increase in cognitive decline, both in aging and with psychiatric disorders, warrants a search for pharmacological treatment. Although dopaminergic treatment approaches represent a major step forward, current dopamine transporter (DAT) inhibitors are not sufficiently specific as they also target other transporters and receptors, thus showing unwanted side effects. Herein, we describe an enantiomerically pure, highly specific DAT inhibitor, S-CE-123, synthetized in our laboratory. Following binding studies to DAT, NET and SERT, GPCR and kinome screening, pharmacokinetics and a basic neurotoxic screen, S-CE-123 was tested for its potential to enhance and/or rescue cognitive functions in young and in aged rats in the non-invasive reward-motivated paradigm of a hole-board test for spatial learning. In addition, an open field study with young rats was carried out. We demonstrated that S-CE-123 is a low-affinity but highly selective dopamine reuptake inhibitor with good bioavailability. S-CE-123 did not induce hyperlocomotion or anxiogenic or stereotypic behaviour in young rats. Our compound improved the performance of aged but not young rats in a reward-motivated task. The well-described impairment of the dopaminergic system in aging may underlie the age-specific effect. We propose S-CE-123 as a possible candidate for developing a tentative therapeutic strategy for age-related cognitive decline and cognitive dysfunction in psychiatric disorders

    Cytotoxic Constituents from Lobaria scrobiculata and a Comparison of Two Bioassays for Their Evaluation

    Get PDF
    Lichens are resilient organisms, known for their unique profiles of secondary metabolites and for exhibiting antioxidative, antibacterial, and cytotoxic effects. Analyzing the cytotoxic potential of Lobaria scrobiculata, a bioassay-guided fractionation strategy yielded seven known metabolites, with two of these compounds, 2 and 3, exhibiting cytotoxicity against HL-60 cells. In order to verify the potential impact of degradation on observed bioactivity, a purity and stability evaluation was conducted. The consistency of results obtained by the water-soluble tetrazolium salt-1 assay and trypan blue cytotoxicity assay was evaluated for selected compounds

    The novel atypical dopamine uptake inhibitor (S)-CE-123 partially reverses the effort-related effects of the dopamine depleting agent tetrabenazine and increases progressive ratio responding

    Get PDF
    Animal studies of effort-based choice behavior are being used to model effort-related motivational dysfunctions in humans. With these procedures, animals are offered a choice between high-effort instrumental actions leading to highly valued reinforcers vs. low effort/low reward options. Several previous studies have shown that dopamine (DA) uptake inhibitors, including GBR12909, lisdexamfetamine, methylphenidate, and PRX-14040, can reverse the effort-related effects of the vesicular monoamine transport blocker tetrabenazine, which inhibits DA storage. Because many drugs that block DA transport act as major stimulants that also release DA, and produce a number of undesirable side effects, there is a need to develop and characterize novel atypical DA transport inhibitors. (S)-CE-123 ((S)-5-((benzhydrylsulfinyl) methyl) thiazole) is a recently developed analog of modafinil with the biochemical characteristics of an atypical DA transport blocker. The present paper describes the enantioselective synthesis and initial chemical characterization of (S)-CE-123, as well as behavioral experiments involving effort-based choice and microdialysis studies of extracellular DA. Rats were assessed using the fixed ratio 5/chow feeding choice test. Tetrabenazine (1.0 mg/kg) shifted choice behavior, decreasing lever pressing and increasing chow intake. (S)-CE-123 was coadministered at doses ranging from 6.0 to 24.0 mg/kg, and the highest dose partially but significantly reversed the effects of tetrabenazine, although this dose had no effect on fixed ratio responding when administered alone. Additional experiments showed that (S)-CE-123 significantly increased lever pressing on a progressive ratio/chow feeding choice task and that the effective dose (24.0 mg/kg) increased extracellular DA in nucleus accumbens core. In summary, (S)-CE-123 has the behavioral and neurochemical profile of a compound that can block DA transport, reverse the effort-related effects of tetrabenazine, and increase selection of high-effort progressive ratio responding. This suggests that (S)-CE-123 or a similar compound could be useful as a treatment for effort-related motivational dysfunction in humans
    • …
    corecore