71 research outputs found

    Detection of single nucleotide and copy number variants in the Fabry disease-associated GLA gene using nanopore sequencing

    Full text link
    More than 900 variants have been described in the GLA gene. Some intronic variants and copy number variants in GLA can cause Fabry disease but will not be detected by classical Sanger sequence. We aimed to design and validate a method for sequencing the GLA gene using long-read Oxford Nanopore sequencing technology. Twelve Fabry patients were blindly analyzed, both by conventional Sanger sequence and by long-read sequencing of a 13 kb PCR amplicon. We used minimap2 to align the long-read data and Nanopolish and Sniffles to call variants. All the variants detected by Sanger (including a deep intronic variant) were also detected by long-read sequencing. One patient had a deletion that was not detected by Sanger sequencing but was detected by the new technology. Our long-read sequencing-based method was able to detect missense variants and an exonic deletion, with the added advantage of intronic analysis. It can be used as an efficient and cost-effective tool for screening and diagnosing Fabry disease

    Chimerism after Liver Transplantation for Type IV Glycogen Storage Disease and Type 1 Gaucher's Disease

    Get PDF
    Background: Liver transplantation for type IV glycogen storage disease (branching-enzyme deficiency) results in the resorption of extrahepatic deposits of amylopectin, but the mechanism of resorption is not known. Methods: We studied two patients with type IV glycogen storage disease 37 and 91 months after liver transplantation and a third patient with lysosomal glucocerebrosidase deficiency (type 1 Gaucher's disease), in whom tissue glucocerebroside deposition had decreased 26 months after liver replacement, to determine whether the migration of cells from the allograft (microchimerism) could explain the improved metabolism of enzyme-deficient tissues in the recipient. Samples of blood and biopsy specimens of the skin, lymph nodes, heart, bone marrow, or intestine were examined immunocytochemically with the use of donor-specific monoclonal anti-HLA antibodies and the polymerase chain reaction, with preliminary amplification specific to donor alleles of the gene for the beta chain of HLA-DR molecules, followed by hybridization with allele-specific oligonucleotide probes. Results: Histopathological examination revealed that the cardiac deposits of amylopectin in the patients with glycogen storage disease and the lymph-node deposits of glucocerebroside in the patient with Gaucher's disease were dramatically reduced after transplantation. Immunocytochemical analysis showed cells containing the HLA phenotypes of the donor in the heart and skin of the patients with glycogen storage disease and in the lymph nodes, but not the skin, of the patient with Gaucher's disease. Polymerase-chain-reaction analysis demonstrated donor HLA-DR DNA in the heart of both patients with glycogen storage disease, in the skin of one of them, and in the skin, intestine, blood, and bone marrow of the patient with Gaucher's disease. Conclusions: Systemic microchimerism occurs after liver allotransplantation and can ameliorate pancellular enzyme deficiencies., In patients with type IV glycogen storage disease, deficiency of the branching enzyme α-1,4-glucan:α-1,4-glucan 6-glucosyltransferase is responsible for the accumulation in the liver and elsewhere of an insoluble and irritating amylopectin-like polysaccharide1. We recently described the absorption of this amylopectin from the extrahepatic tissues after liver transplantation,2 leading Howell to predict that an explanation of the benefit would “clearly teach us a great deal about transplantation”3. That prediction has been shown to be accurate by our observation in this study that patients with type IV glycogen storage disease in whom liver transplantation was successful became chimeras: the cells… © 1993, Massachusetts Medical Society. All rights reserved

    Prolonged survival of a patient with active MDR-TB HIV co-morbidity: insights from a Mycobacterium tuberculosis strain with a unique genomic deletion

    Get PDF
    Coinfection of HIV and multidrug-resistant tuberculosis (MDR-TB) presents significant challenges in terms of the treatment and prognosis of tuberculosis, leading to complexities in managing the disease and impacting the overall outcome for TB patients. This study presents a remarkable case of a patient with MDR-TB and HIV coinfection who survived for over 8 years, despite poor treatment adherence and comorbidities. Whole genome sequencing (WGS) of the infecting Mycobacterium tuberculosis (Mtb) strain revealed a unique genomic deletion, spanning 18 genes, including key genes involved in hypoxia response, intracellular survival, immunodominant antigens, and dormancy. This deletion, that we have called “Del-X,” potentially exerts a profound influence on the bacterial physiology and its virulence. Only few similar deletions were detected in other non-related Mtb genomes worldwide. In vivo evolution analysis identified drug resistance and metabolic adaptation mutations and their temporal dynamics during the patient’s treatment course

    Mirror, mirror on the wall: which microbiomes will help heal them all?

    Get PDF
    BACKGROUND: Clinicians have known for centuries that there is substantial variability between patients in their response to medications—some individuals exhibit a miraculous recovery while others fail to respond at all. Still others experience dangerous side effects. The hunt for the factors responsible for this variation has been aided by the ability to sequence the human genome, but this just provides part of the picture. Here, we discuss the emerging field of study focused on the human microbiome and how it may help to better predict drug response and improve the treatment of human disease. DISCUSSION: Various clinical disciplines characterize drug response using either continuous or categorical descriptors that are then correlated to environmental and genetic risk factors. However, these approaches typically ignore the microbiome, which can directly metabolize drugs into downstream metabolites with altered activity, clearance, and/or toxicity. Variations in the ability of each individual’s microbiome to metabolize drugs may be an underappreciated source of differences in clinical response. Complementary studies in humans and animal models are necessary to elucidate the mechanisms responsible and to test the feasibility of identifying microbiome-based biomarkers of treatment outcomes. SUMMARY: We propose that the predictive power of genetic testing could be improved by taking a more comprehensive view of human genetics that encompasses our human and microbial genomes. Furthermore, unlike the human genome, the microbiome is rapidly altered by diet, pharmaceuticals, and other interventions, providing the potential to improve patient care by re-shaping our associated microbial communities

    Current understanding of the human microbiome

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Medicine 24 (2018): 392–400, doi:10.1038/nm.4517.Our understanding of the link between the human microbiome and disease, including obesity, inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the throughput and accuracy of DNA sequencing of the genomes of microbial communities associated with human samples, complemented by analysis of transcriptomes, proteomes, metabolomes and immunomes, and mechanistic experiments in model systems, have vastly improved our ability to understand the structure and function of the microbiome in both diseased and healthy states. However, many challenges remain. In this Review, we focus on studies in humans to describe these challenges, and propose strategies that leverage existing knowledge to move rapidly from correlation to causation, and ultimately to translation.Many of the studies described here in our laboratories were supported by the NIH, NSF, DOE, and the Alfred P. Sloan Foundation.2018-10-1

    Phosphatidylserine Increases IKBKAP Levels in Familial Dysautonomia Cells

    Get PDF
    Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from abnormal development and progressive degeneration of the sensory and autonomic nervous system. The mutation observed in almost all FD patients is a point mutation at position 6 of intron 20 of the IKBKAP gene; this gene encodes the IÎşB kinase complex-associated protein (IKAP). The mutation results in a tissue-specific splicing defect: Exon 20 is skipped, leading to reduced IKAP protein expression. Here we show that phosphatidylserine (PS), an FDA-approved food supplement, increased IKAP mRNA levels in cells derived from FD patients. Long-term treatment with PS led to a significant increase in IKAP protein levels in these cells. A conjugate of PS and an omega-3 fatty acid also increased IKAP mRNA levels. Furthermore, PS treatment released FD cells from cell cycle arrest and up-regulated a significant number of genes involved in cell cycle regulation. Our results suggest that PS has potential for use as a therapeutic agent for FD. Understanding its mechanism of action may reveal the mechanism underlying the FD disease
    • …
    corecore