7 research outputs found

    Fifth European Dirofilaria and Angiostrongylus Days (FiEDAD) 2016

    Get PDF
    Peer reviewe

    ÉCLAIRE - Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosytems - second periodic report 01/04/2013 to 30/09/2014

    Get PDF

    ECLAIRE: Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems. Project final report

    Get PDF
    The central goal of ECLAIRE is to assess how climate change will alter the extent to which air pollutants threaten terrestrial ecosystems. Particular attention has been given to nitrogen compounds, especially nitrogen oxides (NOx) and ammonia (NH3), as well as Biogenic Volatile Organic Compounds (BVOCs) in relation to tropospheric ozone (O3) formation, including their interactions with aerosol components. ECLAIRE has combined a broad program of field and laboratory experimentation and modelling of pollution fluxes and ecosystem impacts, advancing both mechanistic understanding and providing support to European policy makers. The central finding of ECLAIRE is that future climate change is expected to worsen the threat of air pollutants on Europe’s ecosystems. Firstly, climate warming is expected to increase the emissions of many trace gases, such as agricultural NH3, the soil component of NOx emissions and key BVOCs. Experimental data and numerical models show how these effects will tend to increase atmospheric N deposition in future. By contrast, the net effect on tropospheric O3 is less clear. This is because parallel increases in atmospheric CO2 concentrations will offset the temperature-driven increase for some BVOCs, such as isoprene. By contrast, there is currently insufficient evidence to be confident that CO2 will offset anticipated climate increases in monoterpene emissions. Secondly, climate warming is found to be likely to increase the vulnerability of ecosystems towards air pollutant exposure or atmospheric deposition. Such effects may occur as a consequence of combined perturbation, as well as through specific interactions, such as between drought, O3, N and aerosol exposure. These combined effects of climate change are expected to offset part of the benefit of current emissions control policies. Unless decisive mitigation actions are taken, it is anticipated that ongoing climate warming will increase agricultural and other biogenic emissions, posing a challenge for national emissions ceilings and air quality objectives related to nitrogen and ozone pollution. The O3 effects will be further worsened if progress is not made to curb increases in methane (CH4) emissions in the northern hemisphere. Other key findings of ECLAIRE are that: 1) N deposition and O3 have adverse synergistic effects. Exposure to ambient O3 concentrations was shown to reduce the Nitrogen Use Efficiency of plants, both decreasing agricultural production and posing an increased risk of other forms of nitrogen pollution, such as nitrate leaching (NO3-) and the greenhouse gas nitrous oxide (N2O); 2) within-canopy dynamics for volatile aerosol can increase dry deposition and shorten atmospheric lifetimes; 3) ambient aerosol levels reduce the ability of plants to conserve water under drought conditions; 4) low-resolution mapping studies tend to underestimate the extent of local critical loads exceedance; 5) new dose-response functions can be used to improve the assessment of costs, including estimation of the value of damage due to air pollution effects on ecosystems, 6) scenarios can be constructed that combine technical mitigation measures with dietary change options (reducing livestock products in food down to recommended levels for health criteria), with the balance between the two strategies being a matter for future societal discussion. ECLAIRE has supported the revision process for the National Emissions Ceilings Directive and will continue to deliver scientific underpinning into the future for the UNECE Convention on Long-range Transboundary Air Pollution

    ECLAIRE third periodic report

    Get PDF
    The ÉCLAIRE project (Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems) is a four year (2011-2015) project funded by the EU's Seventh Framework Programme for Research and Technological Development (FP7)

    Interactive visualization of vector data on heightfields

    No full text
    Die präzise Visualisierung großer Mengen georeferenzierter Vektordaten auf Höhenfeldern in Echtzeit ist ein häufiges Problem im Bereich von geographischen Informationssystemen (GIS). Vektordaten bestehen in der Regel aus Linien und Polygonen, die Objekte wie Straßen, Flüsse, Gebäude und Parks darstellen. Die interaktive Erkundung dieser Vektorobjekte in weitläufigen virtuellen 3D Umgebungen und der daraus resultierende große Zoombereich stellen eine zusätzliche Leistungsherausforderung für deren Visualisierung dar. In solch weitläufigen Umgebungen ist es schwierig, eine klare Sichtbarkeit aller Objekte von Interesse sowohl in der Gesamtübersicht als auch ihrer Details in Nahansichten zu gewährleisten. In dieser Arbeit wird eine bildschirmbasierte Visualisierungsmethode für Vektordaten vorgestellt, die zwei verschiedene Ansätze kombiniert, einen statischen und einen dynamischen Ansatz, um das Verhalten und die Sichtbarkeit der entsprechenden Vektorobjekte kontrollieren zu können. Die Vektordaten können Objekte aus der realen Welt darstellen, und um ihre relative Größe zum Rest der 3D Szene zu erhalten, wird für den statischen Ansatz eine konstante Objektgröße verwendet. Dieses statische Verhalten kann jedoch dazu führen, dass Vektorobjekte beim Herauszoomen verschwinden. Da Linien aufgrund ihrer geringen Breite besonders betroffen sind, werden sie beim dynamischen Ansatz entsprechend der aktuellen Ansicht skaliert, um auch aus der Ferne gut sichtbar zu sein. Die Evaluierungsergebnisse zeigen, dass beide bildschirmbasierten Visualisierungsansätze in realen Anwendungsfällen eines raumbezogenen Entscheidungsunterstützungssystems mit weitläufigen Umgebungen und Vektordaten, die aus mehreren Millionen von Eckpunkten bestehen, angewendet werden können und dennoch eine Echtzeitleistung bieten. Die Ergebnisse zeigen auch, dass die vorgeschlagene bildschirmbasierte Visualisierungsmethode im Vergleich zu einer volumenbasierten Visualisierung einen größeren Render-Overhead erzeugt, aber bei großen Vektordatensätzen die neue Methode diese übertrifft.The accurate visualization of huge amounts of georeferenced vector data on heightfields in real-time is a common problem in the field of geographic information systems (GIS). Vector data usually consist of lines and polygons, which represent objects such as roads, rivers, buildings, and parks. The interactive exploration of these vector entities in large-scale virtual 3D environments and the resulting large zoom range pose an additional performance challenge for their visualization. Ensuring clear visibility of all objects of interest in overview and of their details in close-up views is difficult in such large-scale environments. In this thesis, a screen-based visualization method of vector data is proposed, which combines two different approaches, a static and a dynamic approach, to control the behavior and the visibility of the corresponding vector entities. The vector data can represent real-world objects and to preserve their relative size to the rest of the 3D world, a constant object size is used for the static approach. But, this static behavior can cause vector entities to disappear when zooming out. Since lines are especially affected due to their small width, the dynamic approach scales them according to the current view in order to be clearly visible even from far away. The evaluation results show that both screen-based visualization approaches can be applied in real-world use cases of a geospatial decision support system with large-scale environments and vector data consisting of several millions of vertices and still provide real-time performance. The results also highlight that the proposed screen-based visualization method produces larger render overheads compared with a volume-based visualization, but for large vector data sets, the new method outperforms it.10

    Annotations for Geospatial Decision Support Systems

    Get PDF
    In virtual 3D environments, it is easy to lose orientation while navigating or changing the view with zooming and panning operations. In the real world, annotated maps are an established tool to orient oneself in large and unknown environments. The use of annotations and landmarks in traditional maps can also be transferred to virtual environments. But occlusions by three-dimensional structures have to be taken into account as well as performance considerations for an interactive real-time application. Furthermore, annotations should be discreetly integrated into the existing 3D environment and not distract the viewer’s attention from more important features. In this paper we present an implementation of automatic annotations based on open data to improve the spatial orientation in the highly interactive and dynamic decision support system Visdom. We distinguish between line and area labels for object-specific labeling, which facilitates a direct association of the labels with their corresponding objects or regions. The final algorithm provides clearly visible, easily readable and dynamically adapting annotations with continuous levels of detail integrated into an interactive real-time application
    corecore