
3D Annotations for Geospatial Decision Support Systems

Silvana Zechmeister
VRVis Research Center
Donau-City-Straße 11
Austria 1220, Vienna
silvana.zechmeister

@student.tuwien.ac.at

Daniel Cornel
VRVis Research Center
Donau-City-Straße 11
Austria 1220, Vienna

cornel@vrvis.at

Jürgen Waser
VRVis Research Center
Donau-City-Straße 11
Austria 1220, Vienna

jwaser@vrvis.at

ABSTRACT
In virtual 3D environments, it is easy to lose orientation while navigating or changing the view with zooming
and panning operations. In the real world, annotated maps are an established tool to orient oneself in large and
unknown environments. The use of annotations and landmarks in traditional maps can also be transferred to virtual
environments. But occlusions by three-dimensional structures have to be taken into account as well as performance
considerations for an interactive real-time application. Furthermore, annotations should be discreetly integrated
into the existing 3D environment and not distract the viewer’s attention from more important features. In this paper,
we present an implementation of automatic annotations based on open data to improve the spatial orientation in
the highly interactive and dynamic decision support system Visdom. We distinguish between line and area labels
for object-specific labeling, which facilitates a direct association of the labels with their corresponding objects or
regions. The final algorithm provides clearly visible, easily readable and dynamically adapting annotations with
continuous levels of detail integrated into an interactive real-time application.

Keywords
Automated Label Placement, Map Annotation, Geospatial Visualization, Open Data

1 INTRODUCTION

The economic growth and climate change have a great
impact on the frequency and intensity of natural dis-
asters worldwide. River floodings affect many people
and cause a lot of damage and costs. Therefore, the
need for flood management systems to analyze different
flood scenarios grows, especially in densely populated
areas with river proximity.
Visdom is a flood management system which supports
interactive decision making based on fast geospatial
simulation and visualization. It offers the opportunity
to test different protection measures, to be prepared for
flood disasters and to act correctly in serious situations.
A good support of spatial orientation and navigation in
urban 3D environments for flood managers, relief work-
ers and other persons involved is needed. A common
approach to achieve this aim is the use of annotations.
Thus, this paper covers the extension of Visdom with la-
bels for different landmarks to know where the affected

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Integration of area and line labels into an
interactively explorable and dynamically changing 3D
environment with rising water.

areas are located and to stay oriented while navigating
through the system.

The integration of annotations in a 3D dynamic en-
vironment causes different challenges compared with
static 2D city maps. In contrast to static approaches,
dynamic systems need a good trade-off between com-
putation time and optimal label placement to enable a
real-time user interaction. In Visdom, the annotations

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.2, 2019

141https://doi.org/10.24132/JWSCG.2019.27.2.7



should not impede the user by visual distraction or by
hiding important simulation data. The major goal is not
to place as many labels as possible but to support the
navigation in a subtle way. These requirements increase
the importance of a good visual integration into the dy-
namically changing 3D environment (see Figure 1).

The label data used for the annotations are from Geo-
fabrik [Geo18], a free download server which extracts
geospatial data from OpenStreetMap [Ope19] and pro-
vides map textures, line and area shape files. The tex-
tures do not allow the partitioning of label data and
thus updating comes along with loading high volumes
of data and long waiting times. This impedes dynamic
updates during runtime, while the label resolution, ori-
entation and size have to stay static. Their inflexibility
is not applicable with the high interactivity and large
zoom range of Visdom. Furthermore, texture based la-
bels mapped to the ground are unsuitable for annotating
3D objects such as buildings because they are hiding
their own labels. To guarantee label readability, the la-
bels should be embedded into the 3D world and their
font size and orientation should dynamically adapt to
the zoom factor and the point of view.

OpenStreetMap offers an extensive amount of line and
area segments with their own labels and partially in-
complete label text. The high segmentation of lines re-
sults in too many labels in the most cases. To produce
appropriate annotations, preprocessing and intelligent
label placement has to be executed in advance. When
placing a label along a line, the positioning of its let-
ters is not trivial. They have to follow arbitrary curves
which can have a negative impact on label readability.
Thus, the aim is a label appearance that is as straight
as possible. To make the depth information more per-
ceptible, the annotations should be occluded by other
scene objects. The overlap between two labels should
be avoided, since this would destroy their legibility. It
is essential in a real-time application such as Visdom,
to efficiently test labels for intersection with others.

This paper presents an implementation of annotations
which solves the mentioned problems and eases the lo-
calization and identification of streets, rivers, buildings,
places, city districts and other landmarks.

2 RELATED WORK
There is a wide area of application for labeling features,
it is used in cartography, geographic information sys-
tems and point pattern analysis for instance. Thus, there
exist various techniques to find a label placement and
layout according to the annotation application.

Label Placement
Marks and Shieber [MS91] show that label placement
on a map is an NP-hard problem and it needs heuristics

to label large quantities of features. To find best pos-
sible label positions, the definition of the optimum is
essential. Van Dijk [DKSW02] reviews existing label
placement rules and defines four categories to evalu-
ate label placement quality. The four quality criteria of
Van Dijk are aesthetics, label visibility, feature visibil-
ity and label-feature association. The most common la-
bel features are points, lines and areas to annotate cities,
streets and countries for instance.
Research in the area of 3D maps deals with automating
and optimizing the annotation process concerning the
quality and quantity of label placement. In the case of
dynamic environments with pan and zoom operations,
interactive frame rates with legible annotations embed-
ded into the 3D scene are additional challenges. Nieder-
mann and Nöllenburg [NN16] provide a framework that
labels 31% more road sections than the standard Open-
StreetMap renderer with near-optimal quality based on
quality criteria similar to Van Dijk’s. But their algo-
rithm has running times in the range of seconds to one
minute which does not support dynamic user interac-
tion. Schwartges et al. [SWH14] propose an algorithm
that produces high quantities of aesthetically pleasing
labels but it has also problems to provide real-time in-
teraction due to slow label placement during zooming.
The mentioned approaches project the annotations onto
planes because of the easy implementation and good
readability. This impedes a direct label integration into
features with irregular surfaces such as terrains and may
result in low label-feature association. Maas and Döll-
ner [MD08] use parametric hulls to embed labels also
in curved surfaces to label buildings. Their approach is
limited to three different shape types, which does not al-
low the labeling of streets on uneven terrains. She et al.
[SLL+17] use line features as label base lines to place
labels on arbitrary terrains. Labels nearly perpendicular
to the screen become indecipherable. In this case they
are not placed along their corresponding lines, which
impairs their relationship.

Text Rendering
The use of signed distance fields is a way of text ren-
dering that tries to overcome the resolution limitation
of raster graphics [Gre07]. The signed distance field
texture can be very small and it still produces crisp
text. But this approach does not accurately represent
text contours near to complex letter intersections and it
is not appropriate for very small text sizes [Gus12]. In
such cases, the use of direct rasterized vector graphics
may produce better results [Rou13].

Visualization Techniques
Depending on its appearance, a piece of text can at-
tract attention, be seamlessly integrated into the envi-
ronment or increase legibility and the appealing look of
the whole 3D scene.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.2, 2019

142



Annotations are categorized by the visualization tech-
nique into external and internal labels. External labels
avoid hiding their belonging feature by placing them
besides the feature and connect them with anchor ele-
ments for their association. Their main application area
is the annotation of single 3D objects such as scientific
illustrations [TKGS14]. Multiple external labeled ob-
jects lead to worse label-feature association and visual
clutter. Internal labels, which are directly embedded
into its 3D feature are more suitable for virtual environ-
ments with many features.

Adding an outline to letters can increase their contrast
to the background. The use of halos around labels,
which clear the space close to them, leads to further
readability improvement by losing environment infor-
mation [VTW12]. Vaaraniemi et al. [VFW13] intro-
duce methods to enhance the visibility of labels by fad-
ing, cutting and removing other scene objects that oc-
clude the labels and their features. These methods are
also at the expense of environmental information.
The dynamic change of label position and orientation
enables the adaption to user interaction for better vis-
ibility and readability. But such behavior can result in
flickering and thus distract the user. To avoid this effect,
Maass and Döllner use label blending and animation
[MD07]. With blending, the labels smoothly fade in
before appearing and fade out before disappearing. The
animation is used to continuously move a label from
one position to another.

3 PREPROCESSING
The first step of the annotation pipeline is the pre-
processing of input data provided by OpenStreetMap
[Ope19]. The data need to be prepared to achieve an
efficient further use and to enable fast rendering. The
incoming data are labels and two different shape types.
There are optional importance and color values avail-
able to adapt the label output accordingly. A label is
assigned to a certain shape and a position on or near
this shape. Its corresponding text might be missing or
empty, depending on the OpenStreetMap data. In this
case the label is not taken into account. The two differ-
ent input shapes are lines and 2D polygons, which are
used for streets, places, buildings and other landmarks.
A line is defined by a number of control points. The
connection of all points results in the line to which the
control points belong. A polygon is defined by a set
of consecutive vertices, whereby the first and the last
vertex are the same.

The OpenStreetMap data include numerous line seg-
ments and each segment has its own label. If we would
render all these labels, it would result in an overloaded
and confusing scene. To avoid this, we want to merge
lines and their corresponding labels together. Our ap-
proach is to merge two line segments together if they

have the same label text and are adjacent to each other.
When merging line segments, the labels assigned to
them are merged too. This is done by setting the merged
label into the middle of the new merged line segment.
But some restrictions are needed for the line merge pro-
cess to prevent merging lines when their corresponding
objects (e.g. streets) cannot be clearly identified. This is
the case if it is not obvious which direction a line course
is following. To avoid such a scenario we check the an-
gle between the potential end positions to be merged
and if it is acute-angled, we do not merge. This results
in easily identifiable landmarks that are labeled before
and after strong bends. The polygons have at most one
label, so there is no need for a reduction as for the lines.

The next preprocessing step after the line merge is the
label sorting. Labels are sorted according to their cam-
era distance and their optional importance values. The
importance values are used to improve the final output.
More important labels are visually differentiated com-
pared with less important labels and get a preferential
treatment. More relevant labels are rendered first to in-
crease the probability of their visibility. But indepen-
dent of the importance values, labels near the camera
should be paid particular attention, since these are most
likely labels the viewer is interested in. Thus, labels
with the same importance are treated according to their
distance to the camera. The camera distance changes
more frequently than the importance values because
it depends on the navigation through the environment.
The labels have to be sorted by their camera distance
each frame, but their order according to their impor-
tance stays the same and can be precomputed during
the preprocessing.

For the application of rendering label text in Visdom we
decided to use vector graphic fonts that allow an adap-
tive rasterization for all required font sizes. In the field
of typography, characters are represented by glyphs and
a vector graphic font contains accessible glyph metrics.
With a given label position, each letter can be placed
appropriately by the use of its metrics. All labels are
rendered with the same font, only in different size and
therefore its glyph metrics can be loaded and stored for
later use. Furthermore, texture atlases containing the
most common 256 letters and their outlines are gener-
ated through rasterization of the letter’s vector graphic
descriptions. There are several texture atlases needed
to cover all required font sizes. If only one texture at-
las would be used and scaled to fit the appropriate font
size, the letters would have a poor, upscaled resolution.
Thus, texture atlases for all initial font sizes are gener-
ated in the preprocessing step.

The last preprocessing step concerns the label orienta-
tion and its great impact on readability. Most languages
have a write direction from left to right and therefore
one is trained to read in the same direction. This holds

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.2, 2019

143



Figure 2: Illustration of label (red) and letter positions
(orange) on a horizontally placed area label (a) and a
line label placed along its corresponding line (b).

true for the annotations in Visdom, which are mostly in
German. This is why we aim to orient the labels from
left to right along the line segments to ease reading. The
order of line control points determines the orientation of
the corresponding line label. To adapt the label orien-
tation appropriately, the control point order needs to be
dynamically changed according to the current view. For
a quick access during rendering, the original and the re-
versed order of control points are stored.
With this prepared and quickly accessible information,
text rendering can be executed in a fast and efficient
way.

4 LABEL & LETTER PLACEMENT
After processing the input data, the labels and their in-
dividual letters need to be placed at the right position.
The label placement is a very complex task with sev-
eral possible solutions. Some of them are already men-
tioned in section 2. The main criterion for label and
letter placement in Visdom is the execution time. It has
to be very fast to be able to afford real-time interaction.
But a good placement has to adapt to the current view to
improve its readability by changing its scale and orien-
tation. As a result, label placement is view-dependent
and is therefore changing very often and needs plenty
of time to process. Due to these preconditions, the aim
is not to find an optimal label placement but a satisfac-
tory and fast placement.
The use of fixed instead of dynamic label positions
turned out as a good choice. It avoids flickering and
saves important runtime through skipping dynamic cal-
culations of label positions. After the determination of
a line or area label’s position, each character has to be
placed along a line or above a point of interest. Con-
trary to the determination of the label position, the letter
placement is executed dynamically to change its orien-
tation and scale according the current view. By means
of the glyph metrics, the letters can be placed in the
scene with their positions only. Thus, the aim is to get
the positions for all letters.

4.1 Area Labels
To determine the letter positions it is necessary to get
the floating label positions first. This is accomplished
by shifting up the area’s midpoint. The label position
(see Figure 2a, red) is then the position of the middle
letter too. Starting from this point each letter is placed

horizontally to the screen by using its corresponding
advance. The glyph advance is the horizontal space
needed to place a certain letter accurately and can be
extracted from the glyph metrics. The letter positions
are calculated by subtracting the glyph advance if the
letter is to the left of the label position and adding it
otherwise. The orange points of Figure 2a represent the
positions of the letters and the space between them is
referred to as the advance.

The final output is a label that is horizontally centered
and floating above its corresponding area. Caused by
using the screen-space for the placement, area labels
have a constant size and are always facing the viewer.
This means they have a high readability because the text
is not scaled when zooming in or out, has no distortion
and is always orthogonal to the screen.

4.2 Line Labels

In consequence of fixed label positions, every line label
is permanently located at the middle of its line segment.
A usual practice of line label placement is the projec-
tion of the labels onto their corresponding objects to in-
crease the label-feature association. But to achieve this,
the letter placement needs to be performed in world-
space. The constant size of area labels turns out to
be handy because the labels are never over- or under-
dimensioned and are always easily readable. To get
such a constant label size also for world-space place-
ment, a scale factor is used, to resize letters according
the current zoom factor. The field of view and the dis-
tance between the label and the camera is taken into
account to get an appropriate scale factor. This factor
enables a nearly constant label size with respect to the
screen and thus facilitates better label readability.

The letter placement starts at the label position, which
is the red point in Figure 2b. Moving along the line by
the same glyph advance procedure as for the area labels
provides letter positions. During the letter placement,
one additional process of improvement is done. The av-
eraging of letter positions reduces heavily bent labels.
This creates a more connected label appearance and a
smoother label course. The letters are averaged by set-
ting the letter positions to the center of their predecessor
and successor. After this step, the spaces between these
letter positions do not comply with the associated glyph
advances. To correct them, the positions are shifted to-
wards their neighbor position accordingly. This averag-
ing procedure is done for all letters with two neighbors.
Since heavily bended labels are hardly readable and vi-
sually less appealing, a label is not rendered if the angle
between its averaged letter positions exceeds a certain
maximum.
The determined label and letter positions facilitate the
execution of visibility tests in the next step.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.2, 2019

144



5 VISIBILITY TESTS
In the previous step, labels and their letters are assigned
to a certain position. If all of them were rendered,
the result would be an overloaded scene with worse la-
bel readability and labels covering important informa-
tion. To avoid this scenario, intersection tests are im-
plemented to determine if a label is overlapping with
others. Since the labels are rendered by descending im-
portance and ascending distance to camera, only a less
or equally important label could occlude another label.
When a label overlaps with another, it is not rendered.
If the importance values are equal, the distance to the
camera plays the decisive role. For more efficiency, the
intersection tests are split into three stages.

The first stage represents a search grid, which enables
intersection tests only with labels in the same region.
These regions are cells in a grid covering the entire do-
main. Only labels that are lying in the same cell as the
current label are possible intersection candidates. The
cell access is easy and fast and the search grid avoids a
lot of unnecessary intersection tests.

The second and third stages are the intersection test it-
self with two different kinds of bounding boxes, which
differ in their level of detail. After the first step, all pos-
sible intersection candidates need to be tested for over-
lap with the current label. At first, this is performed
with axis-aligned label bounding boxes. These bound-
ing boxes enclose all letters of a label and are only de-
fined by four vertices. This makes them simple and fast,
but inaccurate. The area covered by this kind of bound-
ing box may be much larger than the label really needs,
since it is always an axis-aligned rectangle.
By only using the label bounding boxes, there would
be many false-positive intersections. Therefore, we use
a second kind of bounding box for intersection testing,
which is only performed if the first bounding boxes are
intersecting. The individual letter bounding boxes are
used to test for overlap of single letters. This is more
precise, but needs more execution time because it has
to be performed for each letter. If this last intersection
test detects an intersection, the current label is not ren-
dered.

The abrupt change of label status from visible to invis-
ible and vice versa triggers label flickering. Therefore,
a smooth fade-in or fade-out is performed by lowering
or increasing label transparency on certain cases. It is
possible to predict if a line label is running out of space
because it may be located at the boundaries of its line
segment. Then the transparency is gradually reduced
according to the remaining space. In Figure 3, one can
see the label "Bischofsgartenstraße" fading out, caused
by the short space remaining of its corresponding line
segment. As discussed earlier, labels that are far away
are less interesting for the viewer than near labels. Due
to this fact, we aim to make labels far away disappear.

Figure 3: Fading out the label "Bischofsgartenstraße"
because it is running out of space while zooming out.

This increases the possibility that labels that belong to
streets, places and other landmarks near the viewer are
visible. To also avoid flickering in this case, they are
faded in and out like labels, which are running out of
space.

Until now, we have only discussed intersections be-
tween labels, but a usual scene in Visdom includes
many different objects like buildings, protection lines,
trees and mountains that also influence the label visi-
bility of line labels. Area labels are rendered floating
above everything else, therefore we do not need to con-
sider occlusion by other objects. It is difficult to de-
liver a realistic depth perception and make line labels
visible through other objects at the same time. For per-
spective views, we decided to preserve the depth infor-
mation for close line labels and give it up on growing
distance. Labels have constant size with respect to the
screen, but other objects have constant size with respect
to the 3D world and they are getting very small if they
are far away. Then their detailed visual information is
no longer detectable. Therefore, it is less irritating that
the labels are visible through occluding objects if they
are far away. In the case of orthographic views, the
depth of buildings and other objects, which may hide
line labels, is hardly perceptible by the user. Thus, the
annotations are always visible through them without de-
stroying the 3D perception.
The visibility tests determine the labels passed to the

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.2, 2019

145



Figure 4: Overview of internal structure and informa-
tion flow (gray arrows) of the render process.

last step of the annotation process to finally render
them.

6 RENDERING
The last step of the annotation process is the rendering
of all labels that passed the visibility tests. The orange
arrow in Figure 4 visualizes the invocation of the Ren-
derer class by the logic of Visdom to start a new render
pass in each frame. When the Renderer becomes active,
it starts the annotation render process with the data re-
ceived by the Resource class, which manages the label
data. These data have different sources and attributes.
The data delivered by OpenStreetMap [Ope19] are con-
stant at run-time and the glyph metrics extracted from
a given font do not change either. Therefore these data
represent the static part of the data managed by the Re-
source. The user settings represent the dynamic data
because the values can be modified by the user dur-
ing execution. If the user changes them, the Resource
updates all dependent resources and provides the re-
freshed data for the Renderer. If there are no changes
made by the user, the default font is the Google font
Roboto [Rob19], which has a special design to make
label text more legible even with a small point size.

To increase the contrast between labels and their back-
ground and to further improve their readability, outlines
are added to the letters. The size and color information
of a label indicate the label relevance for the user. The
outline color is chosen as white or black, depending on
which color gives the highest monochrome contrast to
the font color. The default font is bold to balance the
ratio between the label letters and their outline and to
improve annotation text legibility.

According the current view, the Renderer uses the up-
dated resource data for the label and letter placement
and for the execution of visibility tests. After these
steps, it passes label texts, letter positions, scale factors
and the glyph metrics to the geometry shader to span
the quad for every letter. This is done on the GPU to
save important runtime. At this point, every character
has only one position and the geometry shader uses the
glyph metrics to calculate four vertices out of this one.

But since there is only one real point in the 3D world
of Visdom, there is also only one depth value. For area
labels this does not matter, since they do not need a pre-
cise depth value because they are not depth tested with

Figure 5: Occlusion issue with standard depth test (a)
and desired behavior with modified depth test (b).

the rest of the scene. This is due to the fact that area la-
bels are floating above everything else. But for line la-
bels, the missing accuracy of depth values is a real prob-
lem. This one depth value per character lies directly on
the line and if the underlying ground is not exactly par-
allel to the line, the four generated vertices out of this
one appear wrong and are sometimes occluded by the
terrain (see Figure 5a). To avoid such depth errors, the
OpenGL integrated depth testing is disabled and an own
depth test is performed in the fragment shader. The re-
sult of the own depth test implementation is shown in
Figure 5b. This test uses a depth offset that complies
with the letter height. If the letter depth with this offset
is closer than the rest of the 3D environment, the letter
will be drawn.

The Renderer passes color information and texture at-
lases of the characters and their outlines to the frag-
ment shader. Afterwards, the fragment shader is able
to finally draw the label characters to the global frame
buffer of the Visdom scene.

7 RESULTS
The described annotation process of the last sections is
implemented with the use of the graphics API OpenGL
and the programming language C++. All used fonts by
annotations in Visdom are of the font format TrueType.
It is a common font format that stores font information
by the use of quadratic Bézier splines. This classifies it
to the group of vector graphic font formats. To access
and handle the font data provided by TrueType, the li-
brary FreeType [Lem19] is used. It eases the extraction
of glyph metrics and the rasterization of vector graphics
to get appropriate bitmap font data. If the used font does
not provide hinting information, FreeType offers auto-
hinting to make text more legible. But missing kerning
information cannot be replaced and is therefore a strict
requirement for the chosen font.

We use different case studies to analyze the visual ap-
pearance and behavior of the annotations in Visdom.
There are five flood management case studies, three of
them are located in Austria, one in Germany and one
in Italy. They differ in attributes such as landscape,
amount and type of label data and in the case of Italy, in
language of annotations. The case studies do not only
consist of densely populated cities but some also cover
a wider range with multiple cities and villages. Some
also have hills, mountains, rivers and dikes, where the

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.2, 2019

146



Figure 6: Line labels dynamically adapt to the water
surface of the flood simulation to stay afloat.

annotations are applied like in cities. These varied case
studies offer the opportunity to see how the annotations
act when the environment and the provided label data
are changing. They ease the analysis of the overall
strengths and weaknesses of the annotations. For this
purpose, performance tests are executed in the five case
studies in different scenarios. These scenarios cover
different views, from orthographic to perspective side
views and from high to low zoom levels.

7.1 Case studies
The fist case study is Cologne in which the annotations
where initially implemented. There is a high amount
of label data to process, which is a challenge for their
dynamic real-time rendering. The terrain is relatively
even with only very low height. This fact improves the
appearance of line labels, because their individual let-
ters are not changing orientation heavily when adapting
to the underlying ground. In the Cologne case study,
the annotations are not only used for streets, buildings,
places and landmarks, they are also applied to labeling
protection barriers and sewer networks. In Figure 6 a
small part of Cologne is shown. One can see labels ris-
ing with the flood, which enables their legibility during
the entire flood simulation, even in inundated areas.

The case study of HORA (= Natural Hazard Overview
& Risk Assessment Austria [Bun18]) sticks out with the
most mountains and rivers in the valleys. The area of
Tyrol shown in Figure 7a is characterized by the moun-
tains of the Alps. The rivers are emphasized with light

blue lines for better river visibility during flooding. One
can see that the floating area labels are well-suited for
city and village labels in mountainous landscapes. But
when labeling rivers and streets on mountain slopes or
sharp ridges, the labels may be heavily bended and thus
hardly readable or disappear when reaching the maxi-
mum bend angle.

The use of the annotations in narrow valleys or on hills
can be observed in the case study of Wachau (see Figure
7b). In addition, the Figure shows the annotation of
the large Danube river along its center line as well as
the combination of labeling flat areas in the valley and
uneven ground on the hills. Compared to the HORA
case study, the labels are disappearing less often since
the hills of Wachau do not have such steep slopes as the
mountains of Tyrol.

The dynamic adaption of the label orientation to make
text always readable from left to right is still correct
on borderline cases such as the almost vertical labels in
Figure 7c. The labels are still easy to read even if they
nestle up to gentle hills and bend along curvy streets.
The Marchfeld case study uses annotations also to label
dikes.

The last of the five introduced case studies is Flo-
rence. The annotations behave similarly to Cologne be-
cause they are both cities with relatively even ground.
Florence has narrower streets and is populated more
densely than Cologne. Thus, there are more streets
over the same area and therefore more labels to process.
Figure 7d shows the labels of Florence in orthographic
view where the modified depth test shows its positive
effect. Using the standard depth test would result in
partially hidden street labels behind buildings. One can
also see that the color-coded buildings and terrain at-
tract attention but the labels are still clearly visible and
legible.

An effect, which is visible in all five case studies is that
the annotations are changing their level of detail accord-
ing to the zoom factor. This property is a positive side
effect of the implemented visibility tests and consider-
ation of label importance. When zooming out, labels
which are less important are disappearing and give way
to more important labels. By zooming out, more la-
bels are overlapping with each other and only the labels
with higher relevance have the privilege to be rendered.
When zooming in, fewer labels are overlapping and less
important labels get enough space and become visible.

7.2 Quality
In the related work section the four quality criteria
aesthetics, label visibility, feature visibility and label-
feature association for label placement of Van Dijk
[DKSW02] were introduced. In the following sections
the implemented annotations are analyzed according to
them.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.2, 2019

147



Figure 7: The first case study (a) shows the annotations used in the mountainous environment of Tyrol. In Wachau
(b) one can see labels in narrow valleys and used for the Danube river. The Marchfeld case study (c) shows labels
nestling up to hills and used for dikes. The last case study (d) depicts an orthographic view of Florence with Italian
labels.

Aesthetics
The chosen font "Roboto" provides kerning and hinting
information to get a clean and sharp text that is eas-
ily legible even on small point sizes. Van Dijk stated
that the label should follow the reading direction and
should be as horizontal and straight as possible. For
area labels, this is obviously true since they are always
drawn horizontally from left to right. Due to dynami-
cally adapting the label orientation and due to the aver-
aging algorithm on letter positions, the line labels com-
ply with this criterion too.

Label & Feature Visibility
Since the labels do not appear if they are overlapped
by other labels they, are only covered by other objects
of the environment. In this case we made a compro-
mise between the preservation of depth perception and
label visibility by occluding labels in detailed views
only. The label visibility criterion of Van Dijk that la-
bels should be placed either on land or on water is real-
ized by the concept of floating labels. Either the label
lies on the ground or it is floating on the water.
Fix positions of all labels have a positive effect on per-
formance but they lead to truncation of label text and in-
visible labels on long streets. The visibility of label fea-
tures should be enhanced by avoiding a label placement
by which important features are covered, overlapped,
concealed or disturbed by labels. The relevant informa-
tion of streets is their location, which is not hidden by

labels projected on them. Area labels cover scene parts
that may include important information but floating la-
bels enhance high readability and fast identification of
their belonging features. During the use of Visdom,
area labels are not perceived as obstructive.

Label-Feature Association

Line and area labels are easy to differentiate by their vi-
sual appearance, because line labels are projected onto
their feature and area labels are always floating above
them. Thus, a mix-up of line and area labels is un-
likely. The direct embedding of line labels into their
features creates a very high label-feature association.
The labeling of line segments before and after cross-
ings and junctions further improves the matching of la-
bels to their belonging sections. According to Van Dijk,
area labels should have an extent that corresponds to
the shape of its feature. The diverse shapes and sizes
of areas provided by OpenStreetMap [Ope19] make an
adaption complicated and labels are sized according to
their importance.

7.3 Performance Tests
In this section, the results of performance tests on the
introduced case studies are presented. The tests were
executed on a computer with 32 GB RAM and In-
tel Core i5-4690K CPU with 4x3.50 GHz and with a
Nvidia Geforce GTX 980 graphic card with 4 GB.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.2, 2019

148



Figure 8: The time needed to update all label data (top)
and the distribution of shapes (bottom), both per case
study.

The tests are separated into the two categories update
and render duration. The update process is executed
only on the CPU. By counting CPU cycles, the elapsed
time is measured. For the update tests, only the initial
update process involving the entire data set is consid-
ered because later updates are only processing subsets
of the data. The render duration takes into account the
time needed for the placement, the visibility tests and
the rendering itself. These processes are performed on
both CPU and GPU. The elapsed GPU time is measured
with a pipeline statistics query exposed by the OpenGL
API.

The distribution of shapes over all case studies is visu-
alized in Figure 8 (bottom). Wachau is the only case
study that has more polygons than lines. In all other
case studies, line data dominate, which requires more
line merges during the initial update process. The num-
ber of lines and the update time are strongly correlated.
For the case study of Cologne, OpenStreetMap pro-
vides the most label and shape data of all case studies.
In Figure 8 one can see, that the initial preprocessing of
all label data of the largest case study with over 70,000
shapes (bottom) is faster than one second (top).

The average time needed to render these labels is visu-
alized in Figure 9 (top). The number of labels rendered
to the screen lies between 20 and 30 labels on average.
Since the most labels are rendered in the case study
of Florence and the least in Marchfeld, they have the
longest and shortest average render duration. In Figure
9 (bottom) the number of labels after the update process
is shown. Compared with Figure 8 (bottom) there are
far less labels than shapes because labels with invalid
text are discarded and line labels merged. Focusing on
the Cologne case study, the processing of over 10,000
labels and the rendering of labels passing the visibility
tests took 7.71 ms.

Figure 9: The average time needed for one render pass
per case study (top). The number of line and area labels
and the total number of labels per case study (bottom).

These results show that all case studies can be rendered
at highly interactive frame rates and that the annota-
tions allow fluent dynamic real-time interaction with
Visdom.

8 SUMMARY & FUTURE WORK
This paper covers the implementation of annotations
for an interactive 3D application. Two different label
approaches for line and area labels facilitate an object-
specific labeling, which enables a direct label-feature
association without additional objects. The dynamic
adaption of the label orientation to user interaction and
changing views increases the label legibility. Through
the implemented occlusion handling, the depth percep-
tion in close-up views is preserved and in far-away
views the labels are still readable. The annotations pro-
vide continuous levels of detail, whereby the label vis-
ibility depends on the label importance and the zoom
level. The scaling according to the zoom level fixates
the label size relative to the screen and preserves label
legibility.

The implementation supports processing large quanti-
ties of labels in real time and with a fluent user inter-
action. The use of fixed label positions speeds up the
placement process because only the individual letters
need to be placed dynamically and not the whole label.
The preparation of all data that are not changing per-
manently is also saving important runtime. The three
step visibility tests with the search grid and label and
letter bounding boxes represent a further performance
improvement. Finally, the GPU-side vertex calculation
of the label letters enables the use of only one position
per letter for CPU processing, which also contributes to
the high interactivity. Thus, the implementation fulfills
all measurable initial requirements.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.2, 2019

149



The different case studies demonstrate that the annota-
tions are applicable to different scenarios. But there are
some known issues. The line merge process does not
reliably detect all crossings and junctions to provide an
optimal label-feature association.

The problem of one depth value per letter causes im-
precise depth tests with the environment. This can lead
to labels partially sinking into the ground or labels vis-
ible in front of objects, which should cover them. This
behavior is only appearing in very special cases such as
a highly uneven terrain. As a result of the fixed label
positions, the labels are often truncated or not visible
even if their feature is. This is noticeable especially in
the case of long streets with only one label.

We consider a more flexible, but temporally stable label
placement for very long streets an important direction
for future work.

9 ACKNOWLEDGMENTS
This work was enabled by the Competence Centre
VRVis. VRVis is funded by BMVIT, BMWFW,
Styria, SFG and Vienna Business Agency in the scope
of COMET – Competence Centers for Excellent
Technologies (854174) which is managed by FFG.

10 REFERENCES
[Bun18] Bundesministerium für Nachhaltigkeit und

Turismus. Natural Hazard Overview & Risk As-
sessment Austria. http://www.hora.gv.at,
2019. Accessed: 2019-01-15.

[DKSW02] Steven Van Dijk, Marc Van Kreveld, Ty-
cho Strijk, and Alexander Wolff. Towards an eval-
uation of quality for names placement methods.
International Journal of Geographical Informa-
tion Science, 16(7):641–661, 2002.

[Geo18] Geofabrik GmbH. Maps & Data. http://
www.geofabrik.de/data, 2018. Accessed:
2019-01-15.

[Gre07] Chris Green. Improved Alpha-tested Magni-
fication for Vector Textures and Special Effects.
In ACM SIGGRAPH 2007 courses, pages 9–18,
2007.

[Gus12] Stefan Gustavson. 2D Shape Rendering by
Distance Fields. In OpenGL Insights: OpenGL,
OpenGL ES, and WebGL community experiences,
pages 173–182. CRC Press, 2012.

[Lem19] Werner Lemberg. FreeType Overview.
https://www.freetype.org/
freetype2/docs, 2019. Accessed:
2019-01-15.

[MD07] Stefan Maass and Jürgen Döllner. Embedded
Labels for Line Features in Interactive 3D Virtual
Environments. In Proceedings of the 5th Interna-
tional Conference on Computer Graphics, Virtual

Reality, Visualisation and Interaction in Africa,
pages 53–59, 2007.

[MD08] Stefan Maass and Jürgen Döllner. Seamless
Integration of Labels into Interactive Virtual 3D
Environments Using Parameterized Hulls. In Pro-
ceedings of the Fourth Eurographics Conference
on Computational Aesthetics in Graphics, Visual-
ization and Imaging, pages 33–40, 2008.

[MS91] Joe Marks and Stuart Shieber. The Compu-
tational Complexity of Cartographic Label Place-
ment. Technical report, Harvard Computer Sci-
ence Group, 1991.

[NN16] Benjamin Niedermann and Martin Nöllen-
burg. An algorithmic framework for labeling road
maps. In The Annual International Conference on
Geographic Information Science, pages 308–322.
Springer, 2016.

[Ope19] OpenStreetMap Contributors.
OpenStreetMap. https://www.
openstreetmap.org, 2019. Accessed:
2019-01-15.

[Rob19] Christian Robertson. Google Fonts
Roboto. https://fonts.google.com/
specimen/Roboto, 2019. Accessed: 2019-
01-15.

[Rou13] Nicolas P. Rougier. Higher Quality 2D Text
Rendering. Journal of Computer Graphics Tech-
niques, 2(1):50–64, 2013.

[SLL+17] Jiangfeng She, Jianlong Liu, Chuang Li, Ji-
aqi Li, and Qiujun Wei. A line-feature label place-
ment algorithm for interactive 3d map. Computers
& Graphics, 67:86–94, 2017.

[SWH14] Nadine Schwartges, Alexander Wolff, and
Jan-Henrik Haunert. Labeling streets in interac-
tive maps using embedded labels. In Proceedings
of the 22nd ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information
Systems, pages 517–520. ACM, 2014.

[TKGS14] Markus Tatzgern, Denis Kalkofen, Raphael
Grasset, and Dieter Schmalstieg. Hedgehog la-
beling: View management techniques for external
labels in 3D space. In 2014 IEEE Virtual Reality
(VR), pages 27–32, 2014.

[VFW13] Mikael Vaaraniemi, Martin Freidank, and
Rüdiger Westermann. Enhancing the Visibility
of Labels in 3D Navigation Maps. In Progress
and New Trends in 3D Geoinformation Sciences,
pages 23–40. Springer Berlin Heidelberg, 2013.

[VTW12] Mikael Vaaraniemi, Marc Treib, and Rüdi-
ger Westermann. Temporally Coherent Real-time
Labeling of Dynamic Scenes. In Proceedings of
the 3rd International Conference on Computing
for Geospatial Research and Applications, pages
17:1–17:10, 2012.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.2, 2019

150


	A37-full
	A41-full
	A61-full
	A73-full
	A89-full
	INTRODUCTION
	NONLINEAR ANISOTROPIC DIFFUSION FILTERS
	DIFFUSION STOPPING CRITERIA
	STOPPING CRITERION PROPOSED
	EXPERIMENTAL RESULTS
	2D Case
	Original Images

	3D Case

	CONCLUSIONS

	B05-full
	B17-full
	B67-full
	C02-full
	C17-full
	1 Introduction
	1.1 Problem Statement
	1.2 Approach and Contributions

	2 Related Work
	2.1 Reachability Maps
	2.2 Focus+Context for Map Visualization

	3 Visualization Approach
	3.1 Requirements and Preliminaries
	3.2 Conceptual Overview
	3.3 Image-based Isochrone Generation
	3.4 Mask Generation Stage
	3.5 Color Mapping and Compositing

	4 Results and Discussion
	4.1 Isochrone Evaluation
	4.2 Rendering Performance
	4.3 Limitations and Future Research

	5 Conclusions

	C37-full
	C43-full
	C61-full
	D02-full
	D07-full
	D13-full
	D17-full
	D61-full
	Introduction
	Related Work
	Backbone Architecture
	Triplet Loss

	Methodology
	Triplet Loss Background
	Dynamically Weighted Euclidean Distance
	Channel Attention Feature Embedding

	Experiments
	Evaluation Protocol
	Comparison with Baseline Methods
	Comparison with State of the Arts

	Conclusion
	REFERENCES

	2019-Journal-1-with-DOI.pdf
	A37-full
	A41-full
	A61-full
	A73-full
	A89-full
	INTRODUCTION
	NONLINEAR ANISOTROPIC DIFFUSION FILTERS
	DIFFUSION STOPPING CRITERIA
	STOPPING CRITERION PROPOSED
	EXPERIMENTAL RESULTS
	2D Case
	Original Images

	3D Case

	CONCLUSIONS

	B05-full
	B17-full
	B67-full
	C02-full
	C17-full
	1 Introduction
	1.1 Problem Statement
	1.2 Approach and Contributions

	2 Related Work
	2.1 Reachability Maps
	2.2 Focus+Context for Map Visualization

	3 Visualization Approach
	3.1 Requirements and Preliminaries
	3.2 Conceptual Overview
	3.3 Image-based Isochrone Generation
	3.4 Mask Generation Stage
	3.5 Color Mapping and Compositing

	4 Results and Discussion
	4.1 Isochrone Evaluation
	4.2 Rendering Performance
	4.3 Limitations and Future Research

	5 Conclusions

	C37-full
	C43-full
	C61-full
	D02-full
	D07-full
	D13-full
	D17-full
	D61-full
	Introduction
	Related Work
	Backbone Architecture
	Triplet Loss

	Methodology
	Triplet Loss Background
	Dynamically Weighted Euclidean Distance
	Channel Attention Feature Embedding

	Experiments
	Evaluation Protocol
	Comparison with Baseline Methods
	Comparison with State of the Arts

	Conclusion
	REFERENCES


	2019-Journal-2-with_DOI.pdf
	A37-full
	A41-full
	A61-full
	A73-full
	A89-full
	INTRODUCTION
	NONLINEAR ANISOTROPIC DIFFUSION FILTERS
	DIFFUSION STOPPING CRITERIA
	STOPPING CRITERION PROPOSED
	EXPERIMENTAL RESULTS
	2D Case
	Original Images

	3D Case

	CONCLUSIONS

	B05-full
	B17-full
	B67-full
	C02-full
	C17-full
	1 Introduction
	1.1 Problem Statement
	1.2 Approach and Contributions

	2 Related Work
	2.1 Reachability Maps
	2.2 Focus+Context for Map Visualization

	3 Visualization Approach
	3.1 Requirements and Preliminaries
	3.2 Conceptual Overview
	3.3 Image-based Isochrone Generation
	3.4 Mask Generation Stage
	3.5 Color Mapping and Compositing

	4 Results and Discussion
	4.1 Isochrone Evaluation
	4.2 Rendering Performance
	4.3 Limitations and Future Research

	5 Conclusions

	C37-full
	C43-full
	C61-full
	D02-full
	D07-full
	D13-full
	D17-full
	D61-full
	Introduction
	Related Work
	Backbone Architecture
	Triplet Loss

	Methodology
	Triplet Loss Background
	Dynamically Weighted Euclidean Distance
	Channel Attention Feature Embedding

	Experiments
	Evaluation Protocol
	Comparison with Baseline Methods
	Comparison with State of the Arts

	Conclusion
	REFERENCES





