24 research outputs found
Guest editorial: special issue on signal processing
It affords us great pleasure to introduce you to a collection of the best 10 invited papers focusing on different areas of signal processing that were originally mainly submitted by young scientists and Ph.D. students and, on a limited scale, presented at the 2011 34th International Conference on Telecommunications and Signal Processing (TSP) held on 18-20 August, 2011, in Budapest, Hungary. Here you can find their extended versions, in which the authors present their research results in more depth and detail. [...
Guest editorial: special issue on signal processing
It affords us great pleasure to introduce you to a collection of the best 10 invited papers focusing on different areas of signal processing that were originally mainly submitted by young scientists and Ph.D. students and, on a limited scale, presented at the 2011 34th International Conference on Telecommunications and Signal Processing (TSP) held on 18-20 August, 2011, in Budapest, Hungary. Here you can find their extended versions, in which the authors present their research results in more depth and detail. [...
Exploration of Various Fractional Order Derivatives in Parkinson's Disease Dysgraphia Analysis
Parkinson's disease (PD) is a common neurodegenerative disorder with a
prevalence rate estimated to 2.0% for people aged over 65 years. Cardinal motor
symptoms of PD such as rigidity and bradykinesia affect the muscles involved in
the handwriting process resulting in handwriting abnormalities called PD
dysgraphia. Nowadays, online handwritten signal (signal with temporal
information) acquired by the digitizing tablets is the most advanced approach
of graphomotor difficulties analysis. Although the basic kinematic features
were proved to effectively quantify the symptoms of PD dysgraphia, a recent
research identified that the theory of fractional calculus can be used to
improve the graphomotor difficulties analysis. Therefore, in this study, we
follow up on our previous research, and we aim to explore the utilization of
various approaches of fractional order derivative (FD) in the analysis of PD
dysgraphia. For this purpose, we used the repetitive loops task from the
Parkinson's disease handwriting database (PaHaW). Handwritten signals were
parametrized by the kinematic features employing three FD approximations:
Gr\"unwald-Letnikov's, Riemann-Liouville's, and Caputo's. Results of the
correlation analysis revealed a significant relationship between the clinical
state and the handwriting features based on the velocity. The extracted
features by Caputo's FD approximation outperformed the rest of the analyzed FD
approaches. This was also confirmed by the results of the classification
analysis, where the best model trained by Caputo's handwriting features
resulted in a balanced accuracy of 79.73% with a sensitivity of 83.78% and a
specificity of 75.68%.Comment: Print ISBN 978-3-031-19744-
Degree of Parkinson's Disease Severity Estimation Based on Speech Signal Processing
International audienceThis paper deals with Parkinson's disease (PD) severity estimation according to the Unified Parkinson's Disease Rating Scale: motor subscale (UPDRS III), which quantifies the hallmark symptoms of PD, using an acoustic analysis of speech signals. Experimental dataset comprised 42 speech tasks acquired from 50 PD patients (UPDRS III ranged from 6 to 92). It was divided into subsets: words, sentences, reading text, monologue and diadochokinetic tasks. We performed a parametrization of the whole corpus and these groups separately using a wide range of conventional and novel speech features. We used guided regu-larized random forest algorithm to select features with maximum clinical information and performed random forests regression to estimate PD severity. According to significant correlations between true UPDRS III scores and scores predicted by the proposed methodology it was shown that information extracted through variety of speech tasks can be used to estimate the degree of PD severity
Prodromal Diagnosis of Lewy Body Diseases Based on the Assessment of Graphomotor and Handwriting Difficulties
To this date, studies focusing on the prodromal diagnosis of Lewy body
diseases (LBDs) based on quantitative analysis of graphomotor and handwriting
difficulties are missing. In this work, we enrolled 18 subjects diagnosed with
possible or probable mild cognitive impairment with Lewy bodies (MCI-LB), 7
subjects having more than 50% probability of developing Parkinson's disease
(PD), 21 subjects with both possible/probable MCI-LB and probability of PD >
50%, and 37 age- and gender-matched healthy controls (HC). Each participant
performed three tasks: Archimedean spiral drawing (to quantify graphomotor
difficulties), sentence writing task (to quantify handwriting difficulties),
and pentagon copying test (to quantify cognitive decline). Next, we
parameterized the acquired data by various temporal, kinematic, dynamic,
spatial, and task-specific features. And finally, we trained classification
models for each task separately as well as a model for their combination to
estimate the predictive power of the features for the identification of LBDs.
Using this approach we were able to identify prodromal LBDs with 74% accuracy
and showed the promising potential of computerized objective and non-invasive
diagnosis of LBDs based on the assessment of graphomotor and handwriting
difficulties.Comment: Print ISBN 978-3-031-19744-
Comparison of CNN-Learned vs. Handcrafted Features for Detection of Parkinson's Disease Dysgraphia in a Multilingual Dataset
Parkinson's disease dysgraphia (PDYS), one of the earliest signs of Parkinson's disease (PD), has been researched as a promising biomarker of PD and as the target of a noninvasive and inexpensive approach to monitoring the progress of the disease. However, although several approaches to supportive PDYS diagnosis have been proposed (mainly based on handcrafted features (HF) extracted from online handwriting or the utilization of deep neural networks), it remains unclear which approach provides the highest discrimination power and how these approaches can be transferred between different datasets and languages. This study aims to compare classification performance based on two types of features: features automatically extracted by a pretrained convolutional neural network (CNN) and HF designed by human experts. Both approaches are evaluated on a multilingual dataset collected from 143 PD patients and 151 healthy controls in the Czech Republic, United States, Colombia, and Hungary. The subjects performed the spiral drawing task (SDT; a language-independent task) and the sentence writing task (SWT; a language-dependent task). Models based on logistic regression and gradient boosting were trained in several scenarios, specifically single language (SL), leave one language out (LOLO), and all languages combined (ALC). We found that the HF slightly outperformed the CNN-extracted features in all considered evaluation scenarios for the SWT. In detail, the following balanced accuracy (BACC) scores were achieved: SL—0.65 (HF), 0.58 (CNN); LOLO—0.65 (HF), 0.57 (CNN); and ALC—0.69 (HF), 0.66 (CNN). However, in the case of the SDT, features extracted by a CNN provided competitive results: SL—0.66 (HF), 0.62 (CNN); LOLO—0.56 (HF), 0.54 (CNN); and ALC—0.60 (HF), 0.60 (CNN). In summary, regarding the SWT, the HF outperformed the CNN-extracted features over 6% (mean BACC of 0.66 for HF, and 0.60 for CNN). In the case of the SDT, both feature sets provided almost identical classification performance (mean BACC of 0.60 for HF, and 0.58 for CNN). Copyright © 2022 Galaz, Drotar, Mekyska, Gazda, Mucha, Zvoncak, Smekal, Faundez-Zanuy, Castrillon, Orozco-Arroyave, Rapcsak, Kincses, Brabenec and Rektorova
Emotional vocal expressions recognition using the COST 2102 Italian database of emotional speech
The present paper proposes a new speaker-independent approach to the classification of emotional vocal expressions by using the COST 2102 Italian database of emotional speech. The audio records extracted from video clips of Italian movies possess a certain degree of spontaneity and are either noisy or slightly degraded by an interruption making the collected stimuli more realistic in comparison with available emotional databases containing utterances recorded under studio conditions. The audio stimuli represent 6 basic emotional states: happiness, sarcasm/irony, fear, anger, surprise, and sadness. For these more realistic conditions, and using a speaker independent approach, the proposed system is able to classify the emotions under examination with 60.7% accuracy by using a hierarchical structure consisting of a Perceptron and fifteen Gaussian Mixture Models (GMM) trained to distinguish within each pair (couple) of emotions under examination. The best features in terms of high discriminative power were selected by using the Sequential Floating Forward Selection (SFFS) algorithm among a large number of spectral, prosodic and voice quality features. The results were compared with the subjective evaluation of the stimuli provided by human subjects