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Abstract—This paper deals with Parkinson’s disease (PD)
severity estimation according to the Unified Parkinson’s Disease
Rating Scale: motor subscale (UPDRS III), which quantifies the
hallmark symptoms of PD, using an acoustic analysis of speech
signals. Experimental dataset comprised 42 speech tasks acquired
from 50 PD patients (UPDRS III ranged from 6 to 92). It was
divided into subsets: words, sentences, reading text, monologue
and diadochokinetic tasks. We performed a parametrization of
the whole corpus and these groups separately using a wide range
of conventional and novel speech features. We used guided regu-
larized random forest algorithm to select features with maximum
clinical information and performed random forests regression
to estimate PD severity. According to significant correlations
between true UPDRS III scores and scores predicted by the
proposed methodology it was shown that information extracted
through variety of speech tasks can be used to estimate the degree
of PD severity.

Keywords—hypokinetic dysarthria; Parkinson’s disease; re-
gression; severity estimation; speech processing.

I. INTRODUCTION

Parkinson’s disease (PD) is a chronic idiopathic disorder
with the unknown aetiology characterized by the progressive
loss of dopaminergic neurons in substancia nigra pars com-
pacta [1]. Besides its hallmark motor symptoms, patients with
PD often develop a multi-modal disruption of motor speech
realization referred to as hypokinetic dysarthria (HD) [2].
According to the previous studies, HD affects the area of
phonation, articulation, prosody, speech fluency and facioki-
nesis [3]–[5].

In summary, the following speech disorders associated with
HD in PD have been observed: increased acoustic noise [1],
reduced voice intensity [6], harsh breathy voice quality [7],
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increased voice nasality [8], reduced variability of pitch and
loudness combined with speech rate abnormalities [9], impre-
cise consonant articulation [10], unintentional introduction of
pauses [11], rapid repetition of words or syllables [11], sudden
deceleration or acceleration in speech [12].

Recently, researchers have focused on the prediction of
clinical rating scales evaluating severity of PD and its progres-
sion [7], [13]–[16]. This study aims to follow the trend and
propose a model that can discriminate healthy and disordered
speech by assessment of hypokinetic dysarthria with a special
focus on estimation of PD severity using the acoustic analysis
of speech signals. Degree of severity of PD is estimated ac-
cording to the Unified Parkinson’s Disease Rating Scale, motor
subscale: UPDRS III (evaluation of motor function [17]).

The rest of this paper is organized as follows. Section II
presents dataset and methodology respectively. This section
provides a description of speech features, statistical analysis
with selection of feature subset with the best discrimination
power and mapping features to the participant’s UPDRS III
score in order to estimate the degree of PD severity. Ex-
perimental results are discussed in section III, and finally in
section IV some conclusions are provided.

II. MATERIALS AND METHODS

A. Speech corpus

A grand total of 100 Spanish native speakers from Colom-
bia were studied. 50 of them suffer from PD (25 men/25
women; mean age 61.14 ± 9.61 years; mean disease duration
10.72 ± 9.25 years; UDPRS III score 36.74 ± 18.74; UDPRS
IV score 2.29 ± 0.76) and the second half are gender and age
matched controls, (25 men/25 women; mean age 60.90 ± 9.47
years) [18]. Each speaker performed 42 speech tasks including
24 isolated words, 10 sentences, one reading text, one mono-
logue, and the rapid repetition of the syllables /pa-ta-ka/, /pa-
ka-ta/ and /pe-ta-ka/.



B. Speech features extraction

Building a regression model for the purpose of this study
consisted of several stages: processing the original speech sig-
nals to extract distinctive, clinically useful properties (feature
extraction stage), selecting a parsimonious, information-rich
subsets of features (feature selection), and mapping the final
features to the clinical outcome we aim to associate the speech
signal with (feature mapping). For the purpose of speech
feature extraction, Praat acoustic analysis software [19] and
Neurological Disorder Analysis Tool [4] (NDAT) written in
MATLAB and developed at the Brno University of Technology
were used.

The feature extraction involved application of widely used
speech signal processing algorithms. To objectively and auto-
matically characterize clinically useful properties of the speech
signals we computed signal to noise ratio derived from the
discrete time wavelet transform (SNR DTWT), harmonics-
to-noise ratio (HNR), noise-to-harmonics ratio (NHR), nor-
malised noise energy (NNE), energy ratio (ER), detrended
fluctuation analysis (DFA) and glottal-to-noise excitation ratio
(GNE). We also used features based on the theory of empirical
mode decomposition (EMD) to decompose the speech signal
into intrinsic mode functions (IMF) and calculated SNR and
NSR from the first few IMFs. Additionally we computed
features based on fundamental frequency and amplitude per-
turbations. We applied features like, jitter (local, absolute),
pitch perturbation quotient (PPQ), pitch period entropy (PPE)
and glottis quotient (GQ) to track deviations in rhythmicity.
We also quantified amplitude deviations using shimmer (local)
and amplitude perturbation quotients (APQ3, APQ5). We also
investigated the number of voice breaks (NVB) and a degree
of voice breaks (DVB) to determine possible hesitation. Next,
we calculated short-time energy (STE), low short-time energy
ratio (LSTE), zero-crossing rate (ZCR), high zero-crossing rate
(HZCR) and median frequency of power spectrum (MFPS),
fraction of locally unvoiced frames (FLUF).

Next, we computed several statistical functionals [5]. In
total, we extracted 715 features. Further description of the
features can be found in our recent articles [4], [5], [20].
The exact features selected for each group of speech tasks
separately and for whole corpus are shown in Table I.

C. Feature selection

The objective of feature selection is to select a compact
subset of features without loss of predictive information. Many
different feature selection methods exist. They are generally
divided into following categories: filters, wrappers, and em-
bedded methods. Wrapper methods search for best feature
subset for a given classifier, however, wrappers are often
computationally very expensive. Embedded methods select
feature subset using the information obtained from a classifier.
Therefore the feature subset selected by embedded methods
can compete with feature subsets selected by wrappers [21]
and often can be computationally less demanding.

In this paper we applied the embedded method: guided
regularized random forest (GRRF) [21]. We used GRRF for its

TABLE I. COMPUTED SPEECH FEATURES

W tasks S tasks R tasks M tasks D tasks A tasks
HNR HNR HNR HNR CP HNR
HNR NHR NHR NHR RATE NHR
MPSD MPSD MPSD MPSD jitt. DFA
ZCR ZCR ER ER shimm. GNE
F0 F0 ZCR ZCR VPL NNE
PPE PPE F0 F0 OPL F0

STE STE PPE PPE SPL jitt.
TKEO TKEO STE STE V+OPL shimm.
jitt. jitt. TKEO TKEO O+SPL GQ
shimm. shimm. NVB NVB ZCR
NNE NVB DVB DVB STE
SNR DVB jitt. jitt. MPSD
GNE NNE shimm. shimm.
IMF SNR NNE NNE
RDPE GNE HZCR HZCR
GQ IMF LSTE LSTE
DFA FLUF SF SF

SF FLUF FLUF
GNE GNE

1 W – words; S – sentences; R – read text; M – monologue; D –
DDK; A – all; CP – DDK cycle periods; RATE – DDK rate;
VPL – DDK voicing part lengths; OPL – DDK offset part
lengths; SPL – DDK silence part lengths.

ability to deal with the node sparsity issue (ability to select the
most useful features even if there is only a few instances for
given node) that is a frequent case with high dimensional data.
GRRF has 2 tuning parameters: λ and γ. However, according
to authors it is sufficient to set first one to a fixed value and
tune only the other one, which often leads to better results in
terms of accuracy [21]. For detailed information about GRRF,
see [21]. In this paper we used γ as the only parameter for
GRRF.

D. Mapping features to UPDRS III

To obtain a preliminary insight into statistical properties
of the selected features, Spearman’s rank sum correlation
coefficient (ρ) between the feature vectors and associated
UPDRS III score was computed. Fig. 1 shows correlation
graphs of the highest correlated feature for each speech task
group giving a visual impression of the distribution of these
feature values and their relationship to the severity of PD.
All selected features significantly correlated with the speakers’
diagnosis (p < 0.001).

Building a regression model requires forming of a functional
relationship y = f(x) to map the feature subspace into the
clinical output we want to associate the speech signal with.
For this purpose we used random forests regression algorithm
in the classical supervised learning setup, therefore we used
training data set to learn the final model to predict PD degree
and evaluated this model using independent data set.

III. DISCUSSION

Firstly, we computed a variety of speech features, see
Table I, to quantify HD. Next, we explored the data by
computing ρ to quantify the association strength and relevance
of speech features to the values of UPDRS III. We also plotted
the correlation graphs of the highest correlated features, see



DFA FASh. ent.

3 3.2 3.4

U
PD

R
S 

II
I

20

40

60

W. tasks, r = -0.4417

E(I SNR)30thp.×10-3
2 4 6 8

U
PD

R
S 

II
I

20

40

60

S. tasks, r = -0.4564

MFPS
2ndR. ent.

2.5 3 3.5

U
PD

R
S 

II
I

20

30

40

50

60

70
R. tasks, r = -0.5458

MFPS
2ndR. ent.

2.5 3 3.5

U
PD

R
S 

II
I

20

40

60

M. tasks, r = -0.5519

DDK V+OPL5thp.

0.05 0.1 0.15

U
PD

R
S 

II
I

20

40

60

D. tasks, r = -0.2966

DFA FAIOD

0.5 1 1.5

U
PD

R
S 

II
I

20

40

60

A. tasks, r = 0.3918

Fig. 1. Correlation graphs for all training speakers (excluding 5 outliers)
from elected subsets of speech tasks: words (W.), sentences (S.), reading
text (R.), monologue (M.), DDK (D.), whole corpus (A.). The speakers
were divided linearly into 5 groups according their UPDRS III value. The
green line represents a trend of PD severity for associated speech feature
values (3rd order polynomial fit curve). Figure notation: IOD – index of
dispersion; Sh. ent – Shannon entropy; R. ent – Rényi entropy; p. – percentile;
r – Spearman’s correlation coefficient.

Fig. 1. All speech features in the figure significantly correlated
with participants’ UPDRS III value (p < 0.001).

Regression models predicting degree of PD severity was
constructed considering 5 tree-based sub-models, one for each
speech task group, and one for the whole corpus. The speech
features selected for the speech tasks can be seen in Table I.
Subsequently feature selection was applied using GRRF algo-
rithm, see section II-C.

Next, we used RF regression algorithm (10-fold validation
with 100 repetition) randomly permuting the data before
splitting into training and testing subsets to find optimal
model settings using randomForest package [22] written in
R language and used these models to predict UPDRS III
score of records from independent data set. The results are
summarized in Table II and Fig. 2. The highest ρ was
computed for the words task group (ρ = 0.5709) with the
lowest RMSE = 10.9520. This model also explains the most
of the variation in data (VE = 63.56%) using a reasonable
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Fig. 2. Graph of predicted UPDRS III for the subsets of speech tasks: words
(W.), sentences (S.), reading text (R.), monologue (M.), DDK (D.) computed
from development data set as a function of true UPDRS III values. Black line
visualizes ideal correlation (ρ = 1) between predicted and true UPDRS III
values. Red line is fitted using least square method and visualizes Pearson
correlation coefficient ρ

.
= 0.502.

amount of features (N = 51).
Finally, we used the regression models and predicted UP-

DRS III score of patients in test data set. ρ to estimate
prediction accuracy. We considered two models (scenarios): a)
regression model consisted of five submodels (built for speech
task groups: words, sentences, reading the text, monologue and
DDK tasks) - model M1; b) regression model built for the
whole corpus - model M2. Resulting Spearman’s correlation
coefficients are: M1ρ = 0.1933; M2ρ = −0.2500. These
results are discussed in section IV.

IV. CONCLUSION

In this paper we performed a complex acoustic analysis of
speech in patients with PD in order to estimate a degree of the
disease severity described by UPDRS III. The analysis was
based on parametrization of several speech tasks described
in [23]. The corpus was split into five subsets: words, sen-
tences, reading text, monologue and diadochokinetic tasks.
We also tried to analyse the whole corpus at once. Next,
we performed feature extraction for all speech tasks subsets
separately using the most suitable features described in Table I.

Consequently, we computed ρ to express the association
of extracted speech features with the participants’ clinical
diagnosis (UPDRS III score) and plotted the correlation graphs
of the features with the highest ρ achieved, see Fig. 1 to give
a visual impression of the distribution of these feature values
and their relationship to the severity of PD.

We used GRRF algorithm to select the feature subsets with
the highest clinical relevance. Next, we built RF regression
models from our reduced feature subsets. Description of the
models we used to predict UPDRS III can be found in
section III. Although we obtained ρ about 0.5 for speech tasks



TABLE II. PERFORMANCE OF REGRESSION MODELS

Speech tasks ρ RMSE VE [%] γ N
W tasks 0.5709 10.9520 63.56 0.20 51
S tasks 0.4886 11.5227 59.66 0.20 50
R tasks 0.5014 19.3689 -13.98 0.05 59
M tasks 0.2136 18.5541 -4.60 0.20 25
D tasks 0.3222 17.3337 8.71 0.15 170

1 W – words; S – sentences; R – read text; M – monologue;
D – DDK; ρ – Spearman’s rank sum correlation coefficient
between predicted and true UPDRS III score for devel data
set; RMSE – root-mean-square error; γ – GRRF parameter
setting the feature subset size (lower γ results in larger
feature subset); VE – variation explained; N – number of
selected features.

groups individually, see Table II, when we used M1 regression
model, resulting ρ was significantly lower (M1ρ = 0.1933).
This loss was probably caused by inappropriate speech task
groups construction. From Fig. 1 it is evident that the number
of observations in R. tasks group and M. tasks group is too
small in comparison with the rest. Therefore the model (M1)
built from these submodels (words, sentences, reading text,
monologue, DDK) does not sufficiently represent subjects’
speech degradation.

In contrast, M2 model achieved higher ρ compared to M1,
which is probably caused by a selection of more optimal set of
features during the feature extraction stage, see Table I. How-
ever, the regression models built for the speech tasks groups
individually still outperforms both M1 and M2. Therefore, the
results indicate that a selection of the speech features specific
for a given speech task can in general increase prediction
power of the regression model.

In this paper, we proved that PD severity estimation based
on acoustic analysis of speech signal has a great potential
in the field of Parkinson’s disease analysis. Nevertheless,
there is still space for deeper investigation. In our previous
studies [5], [20], [24] of HD in PD we mainly focused on
HD quantification and identification. In our future studies
we will follow our recent research in the field of objective
assessment of PD [25] and focus on increasing prediction
accuracy of several scales developed to rate motor (freezing of
gait) and non-motor (depression, sleeping disorders, cognitive
impairment) symptoms of PD.
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