844 research outputs found
Tunable Up-Conversion Photon Detector
We introduce a simple approach for a tunable up-conversion detector. This
scheme is relevant for both single photon detection or anywhere where low light
levels at telecom wavelengths need to be detected with a high degree of
temporal resolution or where high count rates are desired. A system combining a
periodically poled Lithium niobate waveguide for the nonlinear wavelength
conversion and a low jitter Silicon avalanche photodiode are used in
conjunction with a tunable pump source. We report more than a ten-fold increase
in the detectable bandwidth using this tuning scheme.Comment: 3 pages, 3 figures, Accepted for publication in AP
Fast and User-friendly Quantum Key Distribution
Some guidelines for the comparison of different quantum key distribution
experiments are proposed. An improved 'plug & play' interferometric system
allowing fast key exchange is then introduced. Self-alignment and compensation
of birefringence remain. Original electronics implementing the BB84 protocol
and allowing user-friendly operation is presented. Key creation with 0.1 photon
per pulse at a rate of 486 Hz with a 5.4% QBER - corresponding to a net rate of
210Hz - over a 23 Km installed cable was performed.Comment: 21 pages, 6 figures, added referenc
Narrowband Photon Pair Source for Quantum Networks
We demonstrate a compact photon pair source based on a periodically poled
lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen
such that the emitted photon pair modes can be matched in the region of telecom
ultra dense wavelength division multiplexing (U-DWDM) channel spacings. This
approach provides efficient, low-loss, mode selection that is compatible with
standard telecommunication networks. Photons with a coherence time of 8.6 ns
(116 MHz) are produced and their purity is demonstrated. A source brightness of
134 pairs(s.mW.MHz) is reported. The high level of purity and
compatibility with standard telecom networks is of great importance for complex
quantum communication networks
Energy-time entangled qutrits: Bell tests and quantum communication
We have developed a scheme to generate, control, transmit and measure
entangled photonic qutrits (two photons each of dimension d = 3). A Bell test
of this source has previously been reported elsewhere [1], therefore, here we
focus on how the control of the system is realized. Motivated by these results,
we outline how the scheme can be used for two specific quantum protocols,
namely key distribution and coin tossing and discuss some of their advantages
and disadvantages.Comment: For the conference proceedings of QCMC 200
Quantum random number generation for 1.25 GHz quantum key distribution systems
Security proofs of quantum key distribution (QKD) systems usually assume that
the users have access to source of perfect randomness. State-of-the-art QKD
systems run at frequencies in the GHz range, requiring a sustained GHz rate of
generation and acquisition of quantum random numbers. In this paper we
demonstrate such a high speed random number generator. The entropy source is
based on amplified spontaneous emission from an erbium-doped fibre, which is
directly acquired using a standard small form-factor pluggable (SFP) module.
The module connects to the Field Programmable Gate Array (FPGA) of a QKD
system. A real-time randomness extractor is implemented in the FPGA and
achieves a sustained rate of 1.25 Gbps of provably random bits.Comment: 6 pages, 8 figure
Stratospheric impact on tropospheric ozone variability and trends: 1990–2009
The influence of stratospheric ozone on the interannual variability and trends in tropospheric ozone is evaluated between 30 and 90° N from 1990–2009 using ozone measurements and a global chemical transport model, the Community Atmospheric Model with chemistry (CAM-chem). Long-term measurements from ozonesondes, at 150 and 500 hPa, and the Measurements of OZone and water vapour by in-service Airbus aircraft programme (MOZAIC), at 500 hPa, are analyzed over Japan, Canada, the Eastern US and Northern and Central Europe. The measurements generally emphasize northern latitudes, although the simulation suggests that measurements over the Canadian, Northern and Central European regions are representative of the large-scale interannual ozone variability from 30 to 90° N at 500 hPa. CAM-chem is run with input meteorology from the National Center for Environmental Prediction; a tagging methodology is used to identify the stratospheric contribution to tropospheric ozone concentrations. A variant of the synthetic ozone tracer (synoz) is used to represent stratospheric ozone. Both the model and measurements indicate that on large spatial scales stratospheric interannual ozone variability drives significant tropospheric variability at 500 hPa and the surface. In particular, the simulation and the measurements suggest large stratospheric influence at the surface sites of Mace Head (Ireland) and Jungfraujoch (Switzerland) as well as many 500 hPa measurement locations. Both the measurements and simulation suggest the stratosphere has contributed to tropospheric ozone trends. In many locations between 30–90° N 500 hPa ozone significantly increased from 1990–2000, but has leveled off since (from 2000–2009). The simulated global ozone budget suggests global stratosphere-troposphere exchange increased in 1998–1999 in association with a global ozone anomaly. Discrepancies between the simulated and measured ozone budget include a large underestimation of measured ozone variability and discrepancies in long-term stratospheric ozone trends. This suggests the need for more sophisticated simulations including better representations of stratospheric chemistry and circulation
High efficiency coupling of photon pairs in practice
Multi-photon and quantum communication experiments such as loophole-free Bell
tests and device independent quantum key distribution require entangled photon
sources which display high coupling efficiency. In this paper we put forward a
simple quantum theoretical model which allows the experimenter to design a
source with high pair coupling efficiency. In particular we apply this approach
to a situation where high coupling has not been previously obtained: we
demonstrate a symmetric coupling efficiency of more than 80% in a highly
frequency non-degenerate configuration. Furthermore, we demonstrate this
technique in a broad range of configurations, i.e. in continuous wave and
pulsed pump regimes, and for different nonlinear crystals
A Bell-type test of energy-time entangled qutrits
We have performed a Bell-type test for energy-time entangled qutrits. A
method of inferring the Bell violation in terms of an associated interference
visibility is derived. Using this scheme we obtained a Bell value of , representing a violation of above the limit for local
variables. The scheme has been developed for use at telecom wavelengths and
using proven long distance quantum communication architecture to optimize the
utility of this high dimensional entanglement resource.Comment: replaced lost acknowledement
- …