18 research outputs found

    Stratospheric impact on tropospheric ozone variability and trends: 1990-2009

    No full text
    International audienceWe evaluate the influence of stratospheric ozone on the interannual variability and trends in tropospheric ozone from 30-90° N between 1990 and 2009 using ozone measurements and a global chemical transport model (the Community Atmospheric Model with chemistry) with input meteorology from the National Center for Environmental Prediction. The model simulation uses constant interannual emissions. Both the model and measurements indicate that on large spatial scales stratospheric interannual ozone variability drives significant tropospheric variability and contributes to long-term tropospheric ozone trends. To diagnose the measured variability we utilized measurements from ozonesondes and the Measurements of OZone and water vapour by in-service Airbus airCraft programme (MOZAIC) north of 30° N. We identify a regionally robust 150 hPa ozone signal from measurements over Canadian, Northern European and Central European regions and at 500 hPa over Canadian, Northern European and Eastern US regions. Averaged over these regions, the 150 hPa interannual ozone variability explains 69 % of the interannual variability at 500 hPa. The simulated stratospheric signal explains 81 % of the simulated variability over these same regions. Simulated and measured ozone are significantly correlated over these regions and the simulation suggests that the ozone record over these regions is representative of the overall hemispheric 500 hPa ozone record from 30-90° N. The measured 500 hPa trends averaged over these three regions between 1990 and 2000 and 1990 and 2009 are 0.73 (±0.51) ppbv yr−1 and 0.27 (±0.19) ppbv yr−1, respectively. The simulated trends in 1990-2000 and 1990-2009 are 0.29±0.10 ppbv yr−1 and 0.13±0.05 ppbv yr−1, respectively; however, these trends are substantially larger when the model is sampled for missing data exactly as the measurements are. Simulated stratospheric ozone accounts for 79 % of the simulated 500 hPa trend between 1990 and 2000 and 100 % of the simulated trend between 1990 and 2009. Due to the importance of local meteorology and emissions at the surface it is difficult to isolate the stratospheric component of measured surface ozone variability. Overall when averaged between 30-90° N simulated surface interannual ozone trends are 0.18 ppbv yr−1 and 0.07 ppbv yr−1 between 1990 and 1999, and between 1990 and 2009, respectively. We have identified a number of surface sites where the measured interannual ozone variability is correlated with the 150 hPa ozone signal. Most notably these sites include the high mountain sites over Europe and Macehead, Ireland. Over Macehead the measured 150 hPa ozone signal explains 40 % of the interannual variability of the unfiltered measured ozone record. The simulated and measured ozone are highly correlated over Macehead. The Macehead measured and simulated unfiltered ozone trends between 1990 and 2000 are 0.28 (±0.33) and 0.17 (±0.13) ppbv yr−1 respectively; between 1990 and 2009 the measured and simulated trends are 0.18 (±0.11) and 0.08 (±0.06) ppbv yr−1, respectively. Increases in the simulated stratospheric ozone component accounts for 53 % and 75 % of the overall modeled trend for the two periods at Macehead

    Atmospheric pollution over the eastern Mediterranean during summer – a review

    No full text
    International audienceThe eastern Mediterranean (EM) is one of the regions in the world where elevated concentrations of primary and secondary gaseous air pollutants have been reported frequently , mainly in summer. This review discusses published studies of the atmospheric dispersion and transport conditions characterizing this region during the summer, followed by a description of some essential studies dealing with the corresponding concentrations of air pollutants such as ozone, carbon monoxide, total reactive nitrogen, methane, and sul-fate aerosols observed there. The interlaced relationship between the downward motion of the subsiding air aloft induced by global circulation systems affecting the EM and the depth of the Persian Trough, a low-pressure trough that extends from the Asian monsoon at the surface controlling the spatiotemporal distribution of the mixed boundary layer during summer, is discussed. The strength of the wind flow within the mixed layer and its depth affect much the amount of pollutants transported and determine the potential of the atmosphere to disperse contaminants off their origins in the EM. The reduced mixed layer and the accompanying weak westerlies, characterizing the summer in this region, led to reduced ventilation rates, preventing an effective dilution of the contaminants. Several studies pointing at specific local (e.g., ventilation rates) and regional peculiarities (long-range transport) enhancing the build-up of air pollutant concentrations are presented. Tropospheric ozone (O 3) concentrations observed in the summer over the EM are among the highest over the Northern Hemisphere. The three essential processes controlling its formation (i.e., long-range transport of polluted air masses, dynamic subsidence at mid-tropospheric levels , and stratosphere-to-troposphere exchange) are reviewed. Airborne campaigns and satellite-borne initiatives have indicated that the concentration values of reactive nitrogen identified as precursors in the formation of O 3 over the EM were found to be 2 to 10 times higher than in the hemispheric background troposphere. Several factors favor sulfate particulate abundance over the EM. Models, aircraft measurements, and satellite-derived data have clearly shown that sulfate has a maximum during spring and summer over the EM. The carbon monoxide (CO) seasonal cycle, as obtained from global background monitoring sites in the EM, is mostly controlled by the tropospheric concentration of the hydroxyl radical (OH) and therefore demonstrates high concentrations over winter months and the lowest concentrations during summer when photochemistry is active. Modeling studies have shown that the diurnal variations in CO concentration during the summer result from long-range CO transport from Euro-pean anthropogenic sources, contributing 60 to 80 % of the boundary-layer CO over the EM. The values retrieved from satellite data enable us to derive the spatial distribution of methane (CH 4), identifying August as the month with the highest levels over the EM. The outcomes of a recent extensive examination of the distribution of methane over the tropospheric Mediterranean Basin, as part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) program, using model simulations and satellite measurements, are coherent with other previous studies. Moreover, this methane study provides some insight into the role of the Asian monsoon anticyclone in controlling the variability of CH 4 pollu-Published by Copernicus Publications on behalf of the European Geosciences Union. 13234 U. Dayan et al.: Atmospheric pollution over the eastern Mediterranean during summer tant within mid-to-upper tropospheric levels above the EM in summer

    Methodology for using the MOZAIC ozone climatology in the future comparisons with data from SCIAMACHY onboard ENVISAT

    No full text
    The MOZAIC program was designed to collect ozone and water vapour data, using automatic equipment installed on board five long-range Airbus A340 aircraft flying regularly all over the world since August 1994 (Marenco et al. 1998). From ozone data recorded at cruise levels during a 2-year period (September 1994 to August 1996), the first accurate ozone climatology at 9–12 km altitude has been generated (Thouret et al. 1998a). From now on, we are providing different “elaborated” products such as the tropospheric ozone columns and the horizontal climatology with data referred to the tropopause altitude. We have chosen to use the tropopause altitude as the reference to get rid of its seasonal variations. Thus, we have access to the upper tropospheric ozone and to the lower stratospheric ozone distributions. In this first approach, we have chosen only to represent and analyse the measurements recorded at mid northern latitudes. In this study, we defined the tropopause as a mixing zone 30 mb thick centred on the surface PV = 2 PVU. Another set of climatologies is now available for the levels “tropopause ±15 mb” and “tropopause ±45 mb”. In the frame of TROPOSAT, this new set of climatologies demonstrates that we have started a development for future comparisons with the SCIAMACHY instrument, for example. The 8 first years of the MOZAIC program has allowed a first assessment of the inter-annual variability of ozone both in the free troposphere and in the UT/LS to be made. The results are surprisingly high (about 2 %/year). The year 1998 appears as a positive anomaly. Further studies have started to explain such a high increase of ozone in the troposphere and the lower stratosphere at northern mid-latitudes

    Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001-2004

    No full text
    International audienceThe PAES (French acronym for synoptic scale atmospheric pollution) network focuses on the chemical composition (ozone, CO, NOx/y and aerosols) of the lower troposphere (0-3000 m). Its high-altitude surface stations located in different mountainous areas in France complete the low-altitude rural MERA stations (the French contribution to the european program EMEP, European Monitoring and Evaluation Program). They are representative of pollution at the scale of the French territory because they are away from any major source of pollution. This study deals with ozone observations between 2001 and 2004 at 11 stations from PAES and MERA, in addition to 16 elevated stations located in mountainous areas of Switzerland, Germany, Austria, Italy and Spain. The set of stations covers a range of altitudes between 115 and 3550 m. The comparison between recent ozone mixing ratios with those of the last decade found in the literature for two high-elevation sites (Pic du Midi, 2877 m and Jungfraujoch, 3580 m) leads to a trend that has slowed down compared to old trends but remains positive. This could be attribuable to the reduction of ozone precursors at European scale, that however do not compensate an ozone increase at the global scale. Averaged levels of ozone increase with elevation in good agreement with data provided by the airborne observation system MOZAIC (Measurement of OZone and water vapour by Airbus In-service airCraft), showing a highly stratified ozone field in the lower troposphere, with a transition at about 1000 m asl between a sharp gradient (30 ppb/km) below but a gentler gradient (3 ppb/km) above. Ozone variability also reveals a clear transition between boundary-layer and free-tropospheric regimes at the same altitude. Below, diurnal photochemistry accounts for about the third of the variability in summer, but less than 20% above - and at all levels in winter - where ozone variability is mostly due to day-to-day changes (linked to weather conditions or synoptic transport). Monthly-mean ozone mixing-ratios show at all levels a minimum in winter and the classical summer broad maximum in spring and summer - which is actually the superposition of the tropospheric spring maximum (April-May) and regional pollution episodes linked to persistent anticyclonic conditions that may occur from June to September. To complement this classical result it is shown that summer maxima are associated with considerably more variability than the spring maximum. This ensemble of findings support the relevance of mountain station networks such as PAES for the long-term observation of free-tropospheric ozone over Europe

    Summertime upper tropospheric nitrous oxide over the Mediterranean as a footprint of Asian emissions

    No full text
    International audienceThe aim of this paper is to study the transport of nitrous oxide (N2_2O) from the Asian surface tothe eastern Mediterranean Basin (MB). We used measurements from the spectrometer Thermal and Nearinfrared Sensor for carbon Observation Fourier transform spectrometer on board the Greenhouse gasesObserving SATellite (GOSAT) over the period of 2010–2013. We also used the outputs from the chemicaltransport model LMDz-OR-INCA over the same period. By comparing GOSAT upper tropospheric retrievals toaircraft measurements from the High-performance Instrumented Airborne Platform for EnvironmentalResearch Pole-to-Pole Observations, we calculated a GOSAT High-performance Instrumented AirbornePlatform for Environmental Research standard deviation (SD error) of ~2.0 ppbv for a single pixel and a meanbias of approximately −-1.3 ppbv (approximately −-0.4%). This SD error is reduced to ~0.1 ppbv when weaverage the pixels regionally and monthly over the MB. The use of nitrogen fertilizer coupled with high soilhumidity during the summer Asian monsoon produces high N2O emissions, which are transported fromAsian surfaces to the eastern MB. This summertime enrichment over the eastern MB produces a maximum inthe difference between the eastern and the western MB upper tropospheric N2_2O (east-west difference) in Julyin both the measurements and the model. N2O over the eastern MB can therefore be considered as afootprint of Asian summertime emissions. However, the peak-to-peak amplitude of the east-west differenceobserved by GOSAT (~1.4 ± 0.3 ppbv) is larger than that calculated by LMDz-OR-INCA (~0.8 ppbv). This is dueto an underestimation of N2O emissions in the model and to a relatively coarse spatial resolution of themodel that tends to underestimate the N2O accumulation into the Asian monsoon anticyclone

    Variability of tropospheric pollutants and aerosols in the context of the airborne GLAM campaign

    No full text
    International audienceIn the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment) program, the airborne campaign GLAM (Gradient in Longitude of Atmospheric constituents above the Mediterranean basin) has been set up to study the variability of gazeous pollutants with different lifetimes and of aerosols over the Mediterranean Basin (MB). The project mainly focuses on the East-West gradients in pollutants within the mid to upper-troposphere induced by the impact of the Asian Monsoon Anticyclone on the pollutants in the Eastern MB, and on the comparisons with space-borne measurements and model results. On board the Falcon-20, together with an ozone analyzer, humidity and temperature sensors and optical particle counters, a laser absorption spectrometer SPIRIT developed at LPC2E was able to detect very weak changes in the concentration of greenhouse gases. GLAM performed measurements of O 3 , CO, CH4, N2O, CO 2 , H 2 O, temperature and the winds components over the Mediterranean Basin in summer (6-10 August 2014), flying at 5000 m altitude from France to Cyprus and at 9000 m on the flight back. In addition, GLAM performed vertical profiles between about 0.3 and 11 km altitude near the different landing sites. These in situ profiles are an original source to validate what the space-borne instruments detect within the same altitudes. Some of these profiles are also performed close to the surface stations of Lampedusa, Finokalia (Crete) and Ineia (Cyprus), allowing comparison between aircraft and surface measurements. This presentation will provide the first major GLAM results, highlight the variability of the chemical pollutants and aerosols and synthesize what is learnt from this campaign when compared to model results

    Impact of the intercontinental transport of biomass burning pollutants on the Mediterranean Basin during the CHARMEX-GLAM airborne campaign

    No full text
    International audienceThe Mediterranean Basin (MB) is at the crossroad of pollutant emissions from Western and Central Europe and of major dust sources from Sahara and Arabian deserts and thus sensitive to climate change and air quality. Several studies (Formenti et al.,J. Geophys. Res., 2002; Ancellet et al., Atmos. Chem. Phys., 2016) also show the impact on the MB of long-range transport of polluted air masses. However, most of the studies have been dedicated to biomass burning aerosols. The aim of the present study is to show trace gases impact on the MB coming from long-range transport of biomass burning. The Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) campaign in August 2014, as part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) project, aimed at studying the tropospheric chemical variability of gaseous pollutants and aerosols along a West-East transect above the MB. During the GLAM campaign, several instruments onboard the Falcon-20 aircraft (SAFIRE, INSU / MĂ©tĂ©o-France) were deployed including an infrared laser spectrometer (SPIRIT, LPC2E) able to detect weak variations in the concentration of pollutants. During two flights on 6 and 10 August, increases in CO, O3 and aerosols were measured over Sardinia at 5000 and 9000 m asl, respectively. To assess the origin of the air masses, 20-day backward trajectories with a nested-grid regional scale Lagrangian particle dispersion model (FLEXPART, Stohl et al., Atmos. Chem. Phys., 2005) were calculated. Combined with emissions coming from the Global Fire Assimilation System (GFAS) inventory (Kaiser et al., Biogeosciences, 2012), this leads to CO biomass burning contribution to aircraft measured values. Biomass burning emissions located in Siberia in the first case and in northern America in the second case were identified as the cause of this burden of pollutants in the mid and upper troposphere over the MB. By adjusting the injection height of the model and amplifying emissions, FLEXPART was able to reproduce the contribution of those fires to CO enhancements. Our results show that long-range transport of biomass burning induces, at local scale, an increase by a factor ranging from 1.7 to 3.7 with respect to O3 and CO backgrounds of ∌25 and ∌70 ppb, respectively. To assess the biomass burning effect on ozone level at regional scale over the MB, its tropospheric increase is estimated by using the chemical transport model MOCAGE

    Impact of the intercontinental transport of biomass burning pollutants on the Mediterranean Basin during the CHARMEX-GLAM airborne campaign

    No full text
    International audienceThe Mediterranean Basin (MB) is at the crossroad of pollutant emissions from Western and Central Europe and of major dust sources from Sahara and Arabian deserts and thus sensitive to climate change and air quality. Several studies (Formenti et al.,J. Geophys. Res., 2002; Ancellet et al., Atmos. Chem. Phys., 2016) also show the impact on the MB of long-range transport of polluted air masses. However, most of the studies have been dedicated to biomass burning aerosols. The aim of the present study is to show trace gases impact on the MB coming from long-range transport of biomass burning. The Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) campaign in August 2014, as part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) project, aimed at studying the tropospheric chemical variability of gaseous pollutants and aerosols along a West-East transect above the MB. During the GLAM campaign, several instruments onboard the Falcon-20 aircraft (SAFIRE, INSU / MĂ©tĂ©o-France) were deployed including an infrared laser spectrometer (SPIRIT, LPC2E) able to detect weak variations in the concentration of pollutants. During two flights on 6 and 10 August, increases in CO, O3 and aerosols were measured over Sardinia at 5000 and 9000 m asl, respectively. To assess the origin of the air masses, 20-day backward trajectories with a nested-grid regional scale Lagrangian particle dispersion model (FLEXPART, Stohl et al., Atmos. Chem. Phys., 2005) were calculated. Combined with emissions coming from the Global Fire Assimilation System (GFAS) inventory (Kaiser et al., Biogeosciences, 2012), this leads to CO biomass burning contribution to aircraft measured values. Biomass burning emissions located in Siberia in the first case and in northern America in the second case were identified as the cause of this burden of pollutants in the mid and upper troposphere over the MB. By adjusting the injection height of the model and amplifying emissions, FLEXPART was able to reproduce the contribution of those fires to CO enhancements. Our results show that long-range transport of biomass burning induces, at local scale, an increase by a factor ranging from 1.7 to 3.7 with respect to O3 and CO backgrounds of ∌25 and ∌70 ppb, respectively. To assess the biomass burning effect on ozone level at regional scale over the MB, its tropospheric increase is estimated by using the chemical transport model MOCAGE

    Impact of the intercontinental transport of biomass burning pollutants on the Mediterranean Basin during the CHARMEX-GLAM airborne campaign

    No full text
    International audienceThe Mediterranean Basin (MB) is at the crossroad of pollutant emissions from Western and Central Europe and of major dust sources from Sahara and Arabian deserts and thus sensitive to climate change and air quality. Several studies (Formenti et al.,J. Geophys. Res., 2002; Ancellet et al., Atmos. Chem. Phys., 2016) also show the impact on the MB of long-range transport of polluted air masses. However, most of the studies have been dedicated to biomass burning aerosols. The aim of the present study is to show trace gases impact on the MB coming from long-range transport of biomass burning. The Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) campaign in August 2014, as part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) project, aimed at studying the tropospheric chemical variability of gaseous pollutants and aerosols along a West-East transect above the MB. During the GLAM campaign, several instruments onboard the Falcon-20 aircraft (SAFIRE, INSU / MĂ©tĂ©o-France) were deployed including an infrared laser spectrometer (SPIRIT, LPC2E) able to detect weak variations in the concentration of pollutants. During two flights on 6 and 10 August, increases in CO, O3 and aerosols were measured over Sardinia at 5000 and 9000 m asl, respectively. To assess the origin of the air masses, 20-day backward trajectories with a nested-grid regional scale Lagrangian particle dispersion model (FLEXPART, Stohl et al., Atmos. Chem. Phys., 2005) were calculated. Combined with emissions coming from the Global Fire Assimilation System (GFAS) inventory (Kaiser et al., Biogeosciences, 2012), this leads to CO biomass burning contribution to aircraft measured values. Biomass burning emissions located in Siberia in the first case and in northern America in the second case were identified as the cause of this burden of pollutants in the mid and upper troposphere over the MB. By adjusting the injection height of the model and amplifying emissions, FLEXPART was able to reproduce the contribution of those fires to CO enhancements. Our results show that long-range transport of biomass burning induces, at local scale, an increase by a factor ranging from 1.7 to 3.7 with respect to O3 and CO backgrounds of ∌25 and ∌70 ppb, respectively. To assess the biomass burning effect on ozone level at regional scale over the MB, its tropospheric increase is estimated by using the chemical transport model MOCAGE

    Impact of the intercontinental transport of biomass burning pollutants on the Mediterranean Basin during the CHARMEX-GLAM airborne campaign

    No full text
    International audienceThe Mediterranean Basin (MB) is at the crossroad of pollutant emissions from Western and Central Europe and of major dust sources from Sahara and Arabian deserts and thus sensitive to climate change and air quality. Several studies (Formenti et al.,J. Geophys. Res., 2002; Ancellet et al., Atmos. Chem. Phys., 2016) also show the impact on the MB of long-range transport of polluted air masses. However, most of the studies have been dedicated to biomass burning aerosols. The aim of the present study is to show trace gases impact on the MB coming from long-range transport of biomass burning. The Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) campaign in August 2014, as part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) project, aimed at studying the tropospheric chemical variability of gaseous pollutants and aerosols along a West-East transect above the MB. During the GLAM campaign, several instruments onboard the Falcon-20 aircraft (SAFIRE, INSU / MĂ©tĂ©o-France) were deployed including an infrared laser spectrometer (SPIRIT, LPC2E) able to detect weak variations in the concentration of pollutants. During two flights on 6 and 10 August, increases in CO, O3 and aerosols were measured over Sardinia at 5000 and 9000 m asl, respectively. To assess the origin of the air masses, 20-day backward trajectories with a nested-grid regional scale Lagrangian particle dispersion model (FLEXPART, Stohl et al., Atmos. Chem. Phys., 2005) were calculated. Combined with emissions coming from the Global Fire Assimilation System (GFAS) inventory (Kaiser et al., Biogeosciences, 2012), this leads to CO biomass burning contribution to aircraft measured values. Biomass burning emissions located in Siberia in the first case and in northern America in the second case were identified as the cause of this burden of pollutants in the mid and upper troposphere over the MB. By adjusting the injection height of the model and amplifying emissions, FLEXPART was able to reproduce the contribution of those fires to CO enhancements. Our results show that long-range transport of biomass burning induces, at local scale, an increase by a factor ranging from 1.7 to 3.7 with respect to O3 and CO backgrounds of ∌25 and ∌70 ppb, respectively. To assess the biomass burning effect on ozone level at regional scale over the MB, its tropospheric increase is estimated by using the chemical transport model MOCAGE
    corecore