29 research outputs found

    High tolerance of a high-arctic willow and graminoid to simulated ice encasement

    Get PDF
    Source at http://www.borenv.net/BER/ber231-6.htm.Climate change-induced snow thaw and subsequent accumulation of ice on the ground is a potential, major threat to snow-dominated ecosystems. While impacts of ground-ice on arctic wildlife are well explored, the impacts on tundra vegetation is far from understood. We therefore tested the vulnerability of two high-arctic plants, the prostrate shrub Salix polaris and the graminoid Luzula confusa, to ice encasement for 60 days under full environmental control. Both species were tolerant, showing only minor negative responses to the treatment. Subsequent exposure to simulated late spring frost increased the amount of damaged tissue, particularly in S. polaris, compared to the pre-frost situation. Wilting shoot tips of S. polaris increased nearly tenfold, while the proportion of wilted leaves of L. confusa increased by 15%. During recovery, damaged plants of S. polaris responded by extensive compensatory growth of new leaves that were much smaller than leaves of non-damaged shoots. The results suggest that S. polaris and L. confusa are rather tolerant to arctic winter-spring climate change, and this may be part of the reason for their wide distribution range and abundance in the Arctic

    Feasibility of hyperspectral vegetation indices for the detection of chlorophyll concentration in three high Arctic plants: Salix polaris, Bistorta vivipara, and Dryas octopetala

    Get PDF
    Remote sensing, which is based on a reflected electromagnetic spectrum, offers a wide range of research methods. It allows for the identification of plant properties, e.g., chlorophyll, but a registered signal not only comes from green parts but also from dry shoots, soil, and other objects located next to the plants. It is, thus, important to identify the most applicable remote-acquired indices for chlorophyll detection in polar regions, which play a primary role in global monitoring systems but consist of areas with high and low accessibility. This study focuses on an analysis of in situ-acquired hyperspectral properties, which was verified by simultaneously measuring the chlorophyll concentration in three representative arctic plant species, i.e., the prostrate deciduous shrub Salix polaris, the herb Bistorta vivipara, and the prostrate semievergreen shrub Dryas octopetala. This study was conducted at the high Arctic archipelago of Svalbard, Norway. Of the 23 analyzed candidate vegetation and chlorophyll indices, the following showed the best statistical correlations with the optical measurements of chlorophyll concentration: Vogelmann red edge index 1, 2, 3 (VOG 1, 2, 3), Zarco-Tejada and Miller index (ZMI), modified normalized difference vegetation index 705 (mNDVI 705), modified normalized difference index (mND), red edge normalized difference vegetation index (NDVI 705), and Gitelson and Merzlyak index 2 (GM 2). An assessment of the results from this analysis indicates that S. polaris and B. vivipara were in good health, while the health status of D. octopetala was reduced. This is consistent with other studies from the same area. There were also differences between study sites, probably as a result of local variation in environmental conditions. All these indices may be extracted from future satellite missions like EnMAP (Environmental Mapping and Analysis Program) and FLEX (Fluorescence Explorer), thus, enabling the efficient monitoring of vegetation condition in vast and inaccessible polar areas

    Introduction of environmental aspects in designing of machines

    No full text
    Until now, in designing, an engineer’s main task was to find solutions for practical problems including limitations of mainly material, technological and economical nature. Recently it was stated that environmental aspects need to be included as well in any design algorithm to provide low environmental impact profile of any technical object. In this paper, the example of use of the tool oriented at environment impact analysis – Life Cycle Assessment (LCA) – in the design stage of technical objects, is presented. The environmental analysis is done on the wrapping machine, with the special interest given to its gear transmission. Using LCA, environmental profiles and environmental indices for different constructions of gear wheels are elaborated and on this basis, an environmentally optimal combination of materials for elements of transmission gear: shaft, gear wheels and body is proposed. The analysis of results brings interesting observations and conclusions, important and useful for both machine designers and producers
    corecore