22 research outputs found
Molecular Mechanism of Flavonoids Using Fluorescence Spectroscopy and Computational Tools
With more than 4000 compounds identified up to now, flavonoids are present in human diet since they can be found in fruits, vegetables, seeds, grains, and beverages, such as wine and tea. Over the years, medicinal properties of these polyphenolic compounds have been noticed. Consequently, the search for the biological targets and for the description of flavonoids action mechanism has been growing. Fluorescence spectroscopy and molecular docking are techniques based on physical theories which have been helping researchers to describe the interaction between flavonoids and biological targets. In this way, this chapter comes not only as an attempt to gather some works dedicated to explain flavonoid molecular mechanisms of action but also to introduce a brief theory of steady-state fluorescence spectroscopy and molecular docking
Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM) of Piperine
In this article we introduce a proof of concept strategy: Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM) to expedite the discovery of drug metabolites. The use of a bioactive natural product, piperine, that has a well curated metabolite profile but has an unpredictable computational metabolism (Biotransformer v3.0) was selected. We developed an electrochemical reaction to oxidise piperine into a range of metabolites, which were detected by LC-MS. In turn, a series of chemically plausible metabolites were predicted based on ion-fragmentation patterns. These metabolites were docked into the active site of CYP3A4 using Autodock4.2 From the clustered low-energy profile of piperine in the active site it can be inferred that the most likely metabolic position of piperine (based on intermolecular distances to the Fe-oxo active site) is the benzo[d][1,3]dioxole motif. The metabolic profile was confirmed by literature comparison and the electrochemical reaction delivered plausible metabolites vide infra. Thus, demonstrating the power of the hyphenated technique of tandem electrochemical detection and computational evaluation of binding poses. Taken together, we outline a novel approach where diverse data sources are combined to predict and confirm a metabolic outcome for a bioactive structure
Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM) of Piperine
In this article, we introduce a proof-of-concept strategy, Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM), to expedite the discovery of drug metabolites. The use of a bioactive natural product, piperine, that has a well-curated metabolite profile but an unpredictable computational metabolism (Biotransformer v3.0) was selected. We developed an electrochemical reaction to oxidize piperine into a range of metabolites, which were detected by LC-MS. A series of chemically plausible metabolites were predicted based on ion fragmentation patterns. These metabolites were docked into the active site of CYP3A4 using Autodock4.2. From the clustered low-energy profile of piperine in the active site, it can be inferred that the most likely metabolic position of piperine (based on intermolecular distances to the Fe-oxo active site) is the benzo[d][1,3]dioxole motif. The metabolic profile was confirmed by comparison with the literature, and the electrochemical reaction delivered plausible metabolites, vide infra, thus, demonstrating the power of the hyphenated technique of tandem electrochemical detection and computational evaluation of binding poses. Taken together, we outline a novel approach where diverse data sources are combined to predict and confirm a metabolic outcome for a bioactive structure
Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM) of Piperine
In this article, we introduce a proof-of-concept strategy, Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM), to expedite the discovery of drug metabolites. The use of a bioactive natural product, piperine, that has a well-curated metabolite profile but an unpredictable computational metabolism (Biotransformer v3.0) was selected. We developed an electrochemical reaction to oxidize piperine into a range of metabolites, which were detected by LC-MS. A series of chemically plausible metabolites were predicted based on ion fragmentation patterns. These metabolites were docked into the active site of CYP3A4 using Autodock4.2. From the clustered low-energy profile of piperine in the active site, it can be inferred that the most likely metabolic position of piperine (based on intermolecular distances to the Fe-oxo active site) is the benzo[d][1,3]dioxole motif. The metabolic profile was confirmed by comparison with the literature, and the electrochemical reaction delivered plausible metabolites, vide infra, thus, demonstrating the power of the hyphenated technique of tandem electrochemical detection and computational evaluation of binding poses. Taken together, we outline a novel approach where diverse data sources are combined to predict and confirm a metabolic outcome for a bioactive structure
The modulatory role of sulfated and non-sulfated small molecule heparan sulfate-glycomimetics in endothelial dysfunction:absolute structural clarification, molecular docking and simulated dynamics, SAR analyses and ADME studies
The conceptual technology of small molecule glycomimetics, exemplified by compounds C1–4, has shown promising protective effects against lipid-induced endothelial dysfunction, restorative effects on diabetic endothelial colony forming cells, and preventative effects on downstream vascular calcification amongst other important in vitro and ex vivo studies. We report the optimised synthesis of an array of 17 small molecule glycomimetics, including the regio-, enantio- and diastereo-meric sulfated scaffolds of a hit structure along with novel desulfated examples. For the first time, the absolute stereochemical configurations of C1–4 have been clarified based on an identified and consistent anomaly with the Sharpless asymmetric dihydroxylation reaction. We have investigated the role and importance of sulfation pattern, location, regioisomers, and spatial orientation of distal sulfate groups on the modulation of endothelial dysfunction through their interaction with hepatocyte growth factor (HGF). In silico studies demonstrated the key interactions the persulfated glycomimetics make with HGF and revealed the importance of both sulfate density and positioning (both point chirality and vector) to biological activity. In vitro biological data of the most efficient binding motifs, along with desulfated comparators, support the modulatory effects of sulfated small molecule glycomimetics in the downstream signaling cascade of endothelial dysfunction. In vitro absorption, distribution, metabolism, elimination and toxicity (ADMET) data demonstrate the glycomimetic approach to be a promising approach for hit-to-lead studies
Discovery and Characterization of a Cryptic Secondary Binding Site in the Molecular Chaperone HSP70.
Heat Shock Protein 70s (HSP70s) are key molecular chaperones that are overexpressed in many cancers and often associated with metastasis and poor prognosis. It has proven difficult to develop ATP-competitive, drug-like small molecule inhibitors of HSP70s due to the flexible and hydrophilic nature of the HSP70 ATP-binding site and its high affinity for endogenous nucleotides. The aim of this study was to explore the potential for the inhibition of HSP70 through alternative binding sites using fragment-based approaches. A surface plasmon resonance (SPR) fragment screen designed to detect secondary binding sites in HSP70 led to the identification by X-ray crystallography of a cryptic binding site in the nucleotide-binding domain (NBD) of HSP70 adjacent to the ATP-binding site. Fragment binding was confirmed and characterized as ATP-competitive using SPR and ligand-observed NMR methods. Molecular dynamics simulations were applied to understand the interactions with the protein upon ligand binding, and local secondary structure changes consistent with interconversion between the observed crystal structures with and without the cryptic pocket were detected. A virtual high-throughput screen (vHTS) against the cryptic pocket was conducted, and five compounds with diverse chemical scaffolds were confirmed to bind to HSP70 with micromolar affinity by SPR. These results identified and characterized a new targetable site on HSP70. While targeting HSP70 remains challenging, the new site may provide opportunities to develop allosteric ATP-competitive inhibitors with differentiated physicochemical properties from current series
Experimental Approaches and Computational Modeling of Rat Serum Albumin and Its Interaction with Piperine
The bioactive piperine (1-piperoyl piperidine) compound found in some pepper species (Piper nigrum linn and Piper sarmentosum Roxb) has been shown to have therapeutic properties and to be useful for well-being. The tests used to validate these properties were performed in vitro or with small rats. However, in all these assays, the molecular approach was absent. Although the first therapeutic trials relied on the use of rats, no proposal was mentioned either experimentally or computationally at the molecular level regarding the interaction between piperine and rat serum albumin (RSA). In the present study, several spectroscopic techniques were employed to characterize rat serum albumin and, aided by computational techniques, the protein modeling was proposed. From the spectroscopic results, it was possible to estimate the binding constant (3.9 × 104 M−1 at 288 K) using the Stern–Volmer model and the number of ligands (three) associated with the protein applying interaction density function model. The Gibbs free energy, an important thermodynamic parameter, was determined (−25 kJ/mol), indicating that the interaction was spontaneous. This important set of experimental results served to parameterize the computational simulations. The results of molecular docking and molecular dynamics matched appropriately made it possible to have detailed microenvironments of RSA accessed by piperine
Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM) of Piperine
In this article we introduce a proof of concept strategy: Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM) to expedite the discovery of drug metabolites. The use of a bioactive natural product, piperine, that has a well curated metabolite profile but has an unpredictable computational metabolism (Biotransformer v3.0) was selected. We developed an electrochemical reaction to oxidise piperine into a range of metabolites, which were detected by LC-MS. In turn, a series of chemically plausible metabolites were predicted based on ion-fragmentation patterns. These metabolites were docked into the active site of CYP3A4 using Autodock4.2 From the clustered low-energy profile of piperine in the active site it can be inferred that the most likely metabolic position of piperine (based on intermolecular distances to the Fe-oxo active site) is the benzo[d][1,3]dioxole motif. The metabolic profile was confirmed by literature comparison and the electrochemical reaction delivered plausible metabolites vide infra. Thus, demonstrating the power of the hyphenated technique of tandem electrochemical detection and computational evaluation of binding poses. Taken together, we outline a novel approach where diverse data sources are combined to predict and confirm a metabolic outcome for a bioactive structure
Unravelling the interaction of piperlongumine with the nucleotide-binding domain of HSP70:a spectroscopic and in silico study
Piperlongumine (PPL) is an alkaloid extracted from several pepper species that exhibits anti-inflammatory and anti-carcinogenic properties. Nevertheless, the molecular mode of action of PPL that confers such powerful pharmacological properties remains unknown. From this perspective, spectroscopic methods aided by computational modeling were employed to characterize the interaction between PPL and nucleotide-binding domain of heat shock protein 70 (NBD/HSP70), which is involved in the pathogenesis of several diseases. Steady-state fluorescence spectroscopy along with time-resolved fluorescence revealed the complex formation based on a static quenching mechanism. Van’t Hoff analyses showed that the binding of PPL toward NBD is driven by equivalent contributions of entropic and enthalpic factors. Furthermore, IDF and Scatchard methods applied to fluorescence intensities determined two cooperative binding sites with Kb of (6.3 ± 0.2) × 104 M−1. Circular dichroism determined the thermal stability of the NBD domain and showed that PPL caused minor changes in the protein secondary structure. Computational simulations elucidated the microenvironment of these interactions, showing that the binding sites are composed mainly of polar amino acids and the predominant interaction of PPL with NBD is Van der Waals in nature