17 research outputs found

    Monotherapy efficacy of blood-brain barrier permeable small molecule reactivators of protein phosphatase 2A in glioblastoma

    Get PDF
    Glioblastoma is a fatal disease in which most targeted therapies have clinically failed. However, pharmacological reactivation of tumour suppressors has not been thoroughly studied as yet as a glioblastoma therapeutic strategy. Tumour suppressor protein phosphatase 2A is inhibited by non-genetic mechanisms in glioblastoma, and thus, it would be potentially amendable for therapeutic reactivation. Here, we demonstrate that small molecule activators of protein phosphatase 2A, NZ-8-061 and DBK-1154, effectively cross the in vitro model of blood-brain barrier, and in vivo partition to mouse brain tissue after oral dosing. In vitro, small molecule activators of protein phosphatase 2A exhibit robust cell-killing activity against five established glioblastoma cell lines, and nine patient-derived primary glioma cell lines. Collectively, these cell lines have heterogeneous genetic background, kinase inhibitor resistance profile and stemness properties; and they represent different clinical glioblastoma subtypes. Moreover, small molecule activators of protein phosphatase 2A were found to be superior to a range of kinase inhibitors in their capacity to kill patient-derived primary glioma cells. Oral dosing of either of the small molecule activators of protein phosphatase 2A significantly reduced growth of infiltrative intracranial glioblastoma tumours. DBK-1154, with both higher degree of brain/blood distribution, and more potent in vitro activity against all tested glioblastoma cell lines, also significantly increased survival of mice bearing orthotopic glioblastoma xenografts. In summary, this report presents a proof-of-principle data for blood-brain barrier-permeable tumour suppressor reactivation therapy for glioblastoma cells of heterogenous molecular background. These results also provide the first indications that protein phosphatase 2A reactivation might be able to challenge the current paradigm in glioblastoma therapies which has been strongly focused on targeting specific genetically altered cancer drivers with highly specific inhibitors. Based on demonstrated role for protein phosphatase 2A inhibition in glioblastoma cell drug resistance, small molecule activators of protein phosphatase 2A may prove to be beneficial in future glioblastoma combination therapies.Peer reviewe

    Synthesis of Pyrrolo[2,3-d]Pytimidines and Pytimido[4,5-b]Indoles as Inhibitors of Multiple Receptor Tyrosine Kinases, Folate Metabolizing Enzymes and Tubulin

    No full text
    This dissertation deals with the synthesis of substituted pyrrolo[2,3-d]pyrimidines and pyrimido[4,5-b]indoles as potential antitumor agents. The approaches to target tumor cells include inhibition of tumor induced angiogenesis via multiple receptor tyrosine kinase (RTK) inhibition (or) inhibition of the folate metabolizing enzymes - dihydrofolate reductase (DHFR) or thymidylate synthase (TS) (or) inhibition of tubulin

    Diversity-Oriented Synthesis of a Library of Substituted Tetrahydropyrones Using Oxidative Carbon-Hydrogen Bond Activation and Click Chemistry

    No full text
    Eighteen (2RS,6RS)-2-(4-methoxyphenyl)-6-(substituted ethyl)dihydro-2H-pyran-4(3H)ones were synthesized via a DDQ-mediated oxidative carbon-hydrogen bond activation reaction. Fourteen of these tetrahydropyrans were substituted with triazoles readily assembled via azide-alkyne click-chemistry reactions. Examples of a linked benzotriazole and pyrazole motif were also prepared. To complement the structural diversity, the alcohol substrates were obtained from stereoselective reductions of the tetrahydropyrone. This library provides rapid access to structurally diverse non-natural compounds to be screened against a variety of biological targets

    Synthesis and evaluation of 5-(arylthio)-9H-pyrimido[4,5-b]indole-2,4-diamines as receptor tyrosine kinase and thymidylate synthase inhibitors and as antitumor agents

    No full text
    In an effort to optimize the structural requirements for combined cytostatic and cytotoxic effects in single agents, a series of 5-(arylthio)-9H-pyrimido[4,5-b]indole-2,4-diamines 3–7 were synthesized and evaluated as inhibitors of receptor tyrosine kinases (RTKs) as well as thymidylate synthase (TS). The synthesis of these compounds involved the nucleophilic displacement of the common intermediate 5-bromo/5-chloro-9H-pyrimido[4,5-b]indole-2,4-diamine with appropriate aryl thiols. A novel four step synthetic scheme to the common intermediate was developed which is more efficient relative to the previously reported six-step sequence. Biological evaluation of these compounds indicated dual activity in RTKs and human TS (hTS). In the VEGFR-2 assay, compound 5 was equipotent to the standard compound semaxanib and was better than standard TS inhibitor pemetrexed, in the hTS assay. Compounds 3, 6 and 7 were nanomolar inhibitors of hTS and were several fold better than pemetrexed

    N \u3csup\u3e4\u3c/sup\u3e-(3-bromophenyl)-7-(substituted benzyl) pyrrolo[2,3-d] pyrimidines as potent multiple receptor tyrosine kinase inhibitors: Design, synthesis, and in vivo evaluation

    No full text
    With the goal of developing multitargeted receptor tyrosine kinase inhibitors that display potent inhibition against PDGFRβ and VEGFR-2 we designed and synthesized eleven N 4-(3-bromophenyl)-7- (substitutedbenzyl) pyrrolo[2,3-d]pyrimidines 9a-19a. These compounds were obtained from the key intermediate N 4-(3-bromophenyl)-7H-pyrrolo[2,3- d]pyrimidine-2,4-diamine 29. Various arylmethyl groups were regiospecifically attached at the N7 of 29 via sodium hydride induced alkylation with substituted arylmethyl halides. Compounds 11a and 19a were potent dual inhibitors of PDGFRβ and VEGFR-2. In a COLO-205, in vivo tumor mouse model 11a demonstrated inhibition of tumor growth, metastasis, and tumor angiogenesis that was better than or comparable to the standard compound TSU-68 (SU6668, 8). © 2012 Elsevier Ltd. All rights reserved

    Design, synthesis, and structure–activity relationships of pyrimido[4,5-b]indole-4-amines as microtubule depolymerizing agents that are effective against multidrug resistant cells

    No full text
    To identify the structural features of 9H-pyrimido[4,5-b]indoles as microtubule depolymerizers, pyrimido[4,5-b]indoles 2–8 with varied substituents at the 2-, 4- and 5-positions were designed and synthesized. Nucleophilic displacement of 2,5-substituted-4-chloro-pyrimido[4,5-b]indoles with appropriate arylamines was the final step employed in the synthesis of target compounds 2–8. Compounds 2 and 6 had two-digit nanomolar potency (IC50) against MDA-MB-435, SK-OV-3 and HeLa cancer cells in vitro. Compounds 2 and 6 also depolymerized microtubules comparable to the lead compound 1. Compounds 2, 3, 6 and 8 were effective in cells expressing P-glycoprotein or the βIII isotype of tubulin, mechanisms that are associated with clinical drug resistance to microtubule targeting drugs. Proton NMR and molecular modeling studies were employed to identify the structural basis for the microtubule depolymerizing activity of pyrimido[4,5-b]indoles

    Synthesis and biological activity of 5-chloro-N\u3csup\u3e4\u3c/sup\u3e-substituted phenyl-9H-pyrimido[4,5-b]indole-2,4-diamines as vascular endothelial growth factor receptor-2 inhibitors and antiangiogenic agents

    No full text
    Inhibition of receptor tyrosine kinase (RTK) signaling pathways is an important area for the development of novel anticancer agents. Numerous multikinase inhibitors (MKIs) have been recently approved for the treatment of cancer. Vascular endothelial growth factor receptor-2 (VEGFR-2) is the principal mediator of tumor angiogenesis. In an effort to develop ATP-competitive VEGFR-2 selective inhibitors the 5-chloro-N4-substituted phenyl-9H-pyrimido[4,5-b]indole-2,4-diamine scaffold was designed. The synthesis of the target compounds involved N-(4,5-dichloro-9H-pyrimido[4,5-b]indol-2-yl)- 2,2-dimethylpropanamide) as a common intermediate. A nucleophilic displacement of the 4-chloro group of the common intermediate by appropriately substituted anilines afforded the target compounds. Biological evaluation indicated that compound 5 is a potent and selective VEGFR-2 inhibitor comparable to sunitinib and semaxinib. © 2013 Elsevier Ltd. All rights reserved

    AG311, a small molecule inhibitor of complex I and hypoxia-induced HIF-1α stabilization

    No full text
    Cancer cells have a unique metabolic profile and mitochondria have been shown to play an important role in chemoresistance, tumor progression and metastases. This unique profile can be exploited by mitochondrial-targeted anticancer therapies. A small anticancer molecule, AG311, was previously shown to possess anticancer and antimetastatic activity in two cancer mouse models and to induce mitochondrial depolarization. This study defines the molecular effects of AG311 on the mitochondria to elucidate its observed efficacy. AG311 was found to competitively inhibit complex I activity at the ubiquinone-binding site. Complex I as a target for AG311 was further established by measuring oxygen consumption rate in tumor tissue isolated from AG311-treated mice. Cotreatment of cells and animals with AG311 and dichloroacetate, a pyruvate dehydrogenase kinase inhibitor that increases oxidative metabolism, resulted in synergistic cell kill and reduced tumor growth. The inhibition of mitochondrial oxygen consumption by AG311 was found to reduce HIF-1α stabilization by increasing oxygen tension in hypoxic conditions. Taken together, these results suggest that AG311 at least partially mediates its antitumor effect through inhibition of complex I, which could be exploited in its use as an anticancer agent

    Synthesis of N\u3csup\u3e4\u3c/sup\u3e-(substituted phenyl)-N\u3csup\u3e4\u3c/sup\u3e-alkyl/ desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines and identification of new microtubule disrupting compounds that are effective against multidrug resistant cells

    No full text
    A series of fourteen N4-(substituted phenyl)-N 4-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines was synthesized as potential microtubule targeting agents. The synthesis involved a Fisher indole cyclization of 2-amino-6-hydrazinylpyrimidin-4(3H)-one with cyclohexanone, followed by oxidation, chlorination and displacement with appropriate anilines. Compounds 6, 14 and 15 had low nanomolar potency against MDA-MB-435 tumor cells and depolymerized microtubules. Compound 6 additionally had nanomolar GI50 values against 57 of the NCI 60-tumor panel cell lines. Mechanistic studies showed that 6 inhibited tubulin polymerization and [3H]colchicine binding to tubulin. The most potent compounds were all effective in cells expressing P-glycoprotein or the βIII isotype of tubulin, which have been associated with clinical drug resistance. Modeling studies provided the potential interactions of 6, 14 and 15 within the colchicine site. © 2012 Elsevier Ltd. All rights reserved
    corecore