49 research outputs found

    Magnetic Field Sensing Using Whispering Gallery Modes in a Cylindrical Microresonator Infilitrated With Ferronematic Liquid Crystal

    Get PDF
    An all-fiber magnetic field sensor based on whispering-gallery modes (WGM) in a fiber micro-resonator infiltrated with ferronematic liquid crystal is proposed and experimentally demonstrated. The cylindrical microresonator is formed by a 1 cm-long section of a photonic crystal fiber infiltrated with ferronematic materials. Both ferronematics suspensions are prepared based on the nematic liquid crystal 1-(trans-4-Hexylcyclohexyl)-4-isothiocyanatobenzene (6CHBT) doped with rod-like magnetic particles in the first case and with spherical magnetic particles in the second case. WGMs are excited in the fiber microresonator by evanescent light coupling using a tapered fiber with a micron-size diameter. The Q-factor of the microresonator determined from the experimentaly measured transmission spectrum of the tapered fiber was 1.975 × 103. Under the influence of an applied magnetic field the WGM resonances experience spectral shift towards shorter wavelengths. The experimentally demonstrated sensitivity of the proposed sensor was −39.6 pm/mT and −37.3 pm/mT for samples infiltrated with rod like and spherical like ferromagnetic suspensions respectively for a magnetic field range (0-47) mT. Reducing the diameter of the cylindrical micro-resonator by tapering leads to enhancement of the magnetic field sensitivity up to −61.86 pm/mT and −49.88 pm/mT for samples infiltrated with rod like and spherical like ferromagnetic suspensions respectively for the magnetic field range (0-44.7) mT

    Carbon-based magnetic nanocarrier for controlled drug release: a green synthesis approach

    Get PDF
    In this study, hydrophilic magnetic nanoparticles were synthesized by green routes using a methanolic extract of Rubus ulmifolius Schott flowers. The prepared magnetic nanoparticles were coated with carbon-based shell for drug delivery application. The nanocomposites were further chemically functionalized with nitric acid and, sequentially, with Pluronic® F68 (CMNPs-plur) to enhance their colloidal stability. The resulting material was dispersed in phosphate buffer solution at pH 7.4 to study the Doxorubicin loading. After shaking for 48 h, 99.13% of the drug was loaded by the nanocomposites. Subsequently, the drug release was studied in different working phosphate buffer solutions (i.e., PB pH 4.5, pH 6.0 and pH 7.4) to determine the efficiency of the synthesized material for drug delivery as pH-dependent drug nanocarrier. The results have shown a drug release quantity 18% higher in mimicking tumor environment than in the physiological one. Therefore, this study demonstrates the ability of CMNPs-plur to release a drug with pH dependence, which could be used in the future for the treatment of cancer "in situ" by means of controlled drug release.This research was funded by: Project POCI-01-0145-FEDER-006984 – Associate Laboratory LSRE-LCM funded by FEDER through COMPETE2020 - POCI – and by national funds through FCT (Fundação para a Ciência e a Tecnologia); RTChip4Theranostics, supported by Programa Operacional Regional do Norte—Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and by FCT. The authors are grateful to FCT, and FEDER under Programme PT2020 for financial support to CIMO (UID/AGR/00690/2013) and L. Barros contract. R.O.R. acknowledges the Ph.D. scholarship SFRH/BD/97658/2013 granted by FCT. This work was also supported by the Slovak Scientific Grant Agency projects VEGA 2/033/19.info:eu-repo/semantics/publishedVersio

    Magnetic Nanoparticles for Application in Nanomedicine

    Get PDF
    This contribution will summarize the information about the ways of synthesizing biocompatible magnetic nanoparticles and complexes containing them and the possibility of their application in nanomedicine at magnetic drug targeting and thermal treatment of diseases by hyperthermia effect. Some procedures of the preparation of biocompatible magnetizable complexes as magnetic nanoparticles, magnetic fluids, some proteins and enzymes covalently bound to the freshly prepared magnetic nanoparticles in the presence of carbodiimide (bovine serum albumin, streptokinase, chymotrypsin, dispase, glucose oxidase), entrapment of magnetic particles into magnetoliposomes and encapsulation of clinically important drug as indomethacin and taxol together with magnetite nanoparticles in biodegradable polymer. We will summarize the results from the study of structural, magnetic and hyperthermic properties of bacterial magnetite nanoparticles i.e. magnetosomes prepared by biomineralization process of magnetotactic bacteria as a promising material for application in nanomedicine

    Nonadditive changes in conductivity of micro PDLC under the influence of carbon nanotubes and magnetic nanoparticles

    No full text
    Investigated in this work has been the effect of impurities – magnetic nanoparticles (MN) and multiwall carbon nanotubes (MWNT) – separately and together on morphology and dielectric properties of nematic liquid crystal 6CHBT dispersed in polyvinyl alcohol (PDLC). It has been shown that the nanoparticles and nanotubes together change the morphology of PDLC practically in the same manner as every type of impurity singly. The impurities influence also additively on the permittivity at low frequencies and electron component of the conductivity in the polymer matrix. We have found that when MN and MWNT act jointly their ion component of the conductivity exceeds the total changes in conductivity by six times greater than when each type of impurity acts singly. The most probable reason for this nonadditive change in conductivity can be aggregation of these nanoparticles

    Dielectric properties of nematic liquid crystals with Fe₃O₄ nanoparticles in direct magnetic field

    No full text
    Researched within the frequency range 10⁻¹–10⁶ Hz were dielectric properties of pure 6CHBT liquid crystals and 6CHBT ones with the impurity of Fe₃O₄ nanoparticles that have the mean diameter 5 nm and weight concentration 10⁻⁴ %. The study was performed without and under the influence of direct magnetic field with the induction 0.45 and 0.60 T. It has been shown that the magnetic field influences on the parameters of the near-electrode area of liquid crystal. In the case of liquid crystal with magnetic nanoparticles, the parameter changes caused by the magnetic field depend on the induction value

    Morphology and dielectric properties of polymer dispersed liquid crystal with magnetic nanoparticles

    No full text
    It has been shown that introduction of magnetic nanoparticles (MN) of various shapes with the concentration 10⁻¹ wt.% into polymer dispersed liquid crystal (PDLC) causes two effects: the size of liquid crystal droplets decreases, and the amount of the latter with through holes increases. MN increase the effective value of permittivity by more than one order within the frequency range 10⁻¹⁺ -10² HZ , as well as the electron and ion components of conductivity. MN reduce the exponent in the frequency dependence of the electron component of conductivity. The changes caused by the presence of the nanoparticles quantitatively depend on their shape

    Effect of magnetic nanoparticles with various geometrical shapes on morphology and dielectric properties of nanodispersions of nematic liquid crystal in polymer matrix

    No full text
    Prepared in this work are dispersions of nematic liquid crystal in polyvinyl alcohol with sizes of liquid phase inclusions less than one micrometer (nano-polymer dispersed liquid crystal (PDLC)) by changing technology of mixing the components. It was shown that, like to the case of earlier examined dispersions with the droplet sizes 6 to 10 μm (micro-PDLC), the conductivity of nano-PDLC has two components: the ion one, which value does not depend on frequency, and the electron one, the value of which depends on frequency according to a power law. It was found that the ion conductivity of nano-PDLC is three orders of magnitude higher than that for micro-PDLC, and the exponent for the electron components of nano-PDLC conductivity is less than that for micro-PDLC. It was shown that the spherical and rod-like magnetic nanoparticles (MNs) influence in a different manner on the conductivity components of nano-PDLC. If for the maximum concentration of spherical MNs 2 * 10⁻³ wt.% the ion conductivity is 2-fold increased, then at the same concentration of rod-like MNs the ion conductivity value increases by more than one order of magnitud

    Influence of superionic nanoparticles Cu₆PS₅I on dielectric properties of nematic liquid crystal 6СНВТ

    No full text
    Within the frequency range 10…10⁶ Hz, the influence of Cu₆PS₅I nanoparticles on the dielectric properties of planar oriented liquid crystal 6СНВТ has been studied. It has been shown that nanoparticles lead to an increase in conductivity, but the conductivity dependence on concentration is non-monotonic function. It has been suggested that the reason of non-monotonic dependence of conductivity of 6СНВТ on the concentration of nanoparticles is significant influence of ion adsorption on the nanoparticle surface and increase in the viscosity of liquid crystal when introducing nanoparticles
    corecore