11 research outputs found

    Nodding feed antenna for communications with satellites in synchronous orbit

    Get PDF
    The design, fabrication, and performance of a parabolic, ground receiving antenna system with a feed that nods in one axis producing a maximum beam deviation 1.1 deg from boresight is described. The antenna design was: (1)to lower the weight (and the subsequent cost) of the supporting structure and the actuator motors for a tracking antenna by moving just the feed; (2) to use a manual tracking system eliminating the need for expensive electronic controls or computers; (3) to provide for several hours of unattended operation; and (4)to permit operation of the antenna by unskilled personnel. Also described are some physical and orbital phenomenon that effect the operation or design of the antenna. One is the motion of a nearly geostationary satellite due to gravitational forces from the sun, the moon, and other stellar bodies. Others are the rotation of the nodding axis and the feed polarization as a function of the location of the station on the earth. A comparison of per unit cost was made for one unit and a quantity of 100

    Constrained sloshing of liquid mercury in a flexible spherical tank

    Get PDF
    The mercury propellant tank system developed for use with solar electric propulsion was studied to analytically determine the resonant frequencies of the tank system and compare them with the anticipated control natural frequency of the spacecraft. The system consisted of a stainless steel spherical shell and a hemispherical elastometric diaphragm. The major analytical tool used was the NASTRAN program. Six mathematical models were developed. Resonant frequencies for six harmonics were obtained for each of the six models considered. The results show that the lowest resonant frequency for the tank system is about an order of magnitude greater than the anticipated control frequency of the spacecraft

    Structural and thermal response of 30 cm diameter ion thruster optics

    Get PDF
    Tabular and graphical data are presented which are intended for use in calibrating and validating structural and thermal models of ion thruster optics. A 30 cm diameter, two electrode, mercury ion thruster was operated using two different electrode assembly designs. With no beam extraction, the transient and steady state temperature profiles and center electrode gaps were measured for three discharge powers. The data showed that the electrode mount design had little effect on the temperatures, but significantly impacted the motion of the electrode center. Equilibrium electrode gaps increased with one design and decreased with the other. Equilibrium displacements in excess of 0.5 mm and gap changes of 0.08 mm were measured at 450 W discharge power. Variations in equilibrium gaps were also found among assemblies of the same design. The presented data illustrate the necessity for high fidelity ion optics models and development of experimental techniques to allow their validation

    The solid surface combustion space shuttle experiment hardware description and ground-based test results

    Get PDF
    The Lewis Research Center is developing a series of microgravity combustion experiments for the Space Shuttle. The Solid Surface Combustion Experiment (SSCE) is the first to be completed. SSCE will study flame spreading over thermally thin fuels (ashless filter paper) under microgravity conditions. The flight hardware consists of a combustion chamber containing the sample and a computer which takes the data and controls the experiment. Experimental data will include gas-phase and solid-phase temperature measurements and motion pictures of the combustion process. Flame spread rates will be determined from the motion pictures

    Modular thrust subsystem approaches to solar electric propulsion module design

    Get PDF
    Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability
    corecore