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Abstract

The mercury propellant tank system developed
for use with solar electric propulsion was studied
to analytically determine the resonant frequencies
of the tank system and compare them with the anti-
cipated control natural frequency of the space-
craft. The system consisted of a stainless steel
spherical shell and a hemispherical elastomeric
diaphram which separates the mercury propellant and
the gaseous nitrogen pressurant. The major analy-
tical tool used was the NASTRAN program. Six math-
ematical models, which represent various amounts of
mercury in the tank system were developed. Reso-
nant frequencies for six harmonics were obtained
for each of the six models considered. The results
show that the lowest resonant frequency for the
tank system is about an order of manitude greater
than the anticipated control frequency of the
spacecraft.

Introduction

As the energy requirements for advanced space-
craft become increasingly higher, the use of solar
electric propulsion appears more attractive. Ion
thrusters used for the propulsion system could be
fueled by mercury propellant which could be stored
as a liquid in some type of spherical tank. To
achieve a positive expulsion of the mercury, it
would be necessary to equip the tank with an elas-
tomeric diaphram. Such a propellant system has
been flown successfully on the Space Electric
Rocket Test II (Sert II) Mission launched in Feb-
ruary of 1970, and is operating successfully. Fig-
ures 23 and 24 of Ref. 1 show a cross section of
the main feed tank and the neutralizer feed tank of
Sert II. An important consideration in the use of
this type of system is the evaluation of the liquid
sloshing characteristics of the partially loaded
tank, The major sloshing concern will generally
occur when some of the mercury has been expended
after the spacecraft has been in orbit. In the de-
sign of a spacecraft from initial concept to final
launch, many flight parameters can and do change.
Thus, a certain size tank may initially be designed
to be 97% to 987 filled with mercury propellant at
launch. In this configuration, although the system
is subjected to a broad range of input frequencies,
the ability of the mercury to slosh is limited.
However, if mission plans change and the amount of
mercury required must be reduced, the propellant
tank can be offloaded in two ways. The preferred
method would be to add a mission dependent bladder
support liner as shown in Fig. 14 of Ref. 2. The
other method would be to simply offload the tank
without changing the support liner. This method
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would only be used in an emergency becauge the par-
tially filled tank would be prone to sloshing during
the launch environment.

The purpose of this investigation was to ana-
lytically determine the resonant slosh frequencies
of liquid mercury in flexible spherical tanks with
varying amounts of mercury and an elastomeric dia-
phram which is kept in contact with the mercury by a
gaseous nitrogen pressurant. The propellant system
studied in this work was that proposed for the 30 cm
diameter ion thrusters which were to be used for
high energy missions.

Previous Work

The only paper that was found in a literature
search on the sloshing of mercury in spherical tanks
was the experimental project of Ross and Womack.

In their work, a preliminary investigation was con-
ducted to evaluate the slosh characteristics of mer-
cury propellant in a 23 cm diameter tank with a pos-
itive expulsion diaphram. Their model had the same
characteristics as the model reported in this paper.
Ross and Womack showed that the resonant frequencies
are a function of (a) the ullsge, i.e., the percent
of tank volume not containing liquid, (b) the stiff-
ness of the elastomeric diaphram, (c) the static de-
formed shape of the diaphram, and (d) the nitrogen
pressure. They also reported that analytical tech-
niques for predicting the configuration of the inter-
face due to the pressure-mercury-bladder interaction
do not exist. 1In addition, no analytical results
have been found on the constrained sloshing of liq-
quids in partially filled flexible spherical tanks.

Belytschko‘ reviewed the state of the art for
the analysis of fluid structure systems. The tech-
niques reviewed have particular utility in reactor
safety analysis. However, it is felt that much of
the development taking place in this area can be of
use in the problem being investigated here. One of
the items brought out by Belytschko is the necessity
of coupling the work being done in the development
of structural analysis algorithms with the work be-
ing done in the development of fluid analysis al-
goritms. Another {tem which is receiving attention
is the relationship between the Eulerian and
Lagrangian mesh systems which have been used in the
fluid and structural mechanics formulations. Stud-
ies are now being conducted on the manner in which
they must be modified so that effective rezoning
can be accomplished at every solution time step.

Approach

The basic analytical tool used in this work is
the NASTRAN program.5 In the formulation of the
governing equations, the motions of the fluid are
assumed to be small compared to the dimensions of
the container so that non-linear terms in the
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equations of motion can be neglected. Another re-
striction is that the shape of the container must
be axisymmetric. However, there is no implication
that the motions of the fluid and the structure are
axisymmetric. The restriction regarding the con-
tainer shape was introduced to simplify the equa-
tions governing the fluid solid system. The sim-
plification enables the governing partial differen-
tial equations to be separated such that a series of
two-dimensional problems can be solved in which the
Fourier harmonic becomes an input parameter.

As mentioned earlier, the deformed shape of the
bladder was not known for a particular ullage, but
was assumed to be the shape shown for each model in
table 1. The work of Ross and Womack was used as a
guide in determining the deformed bladder geometry.
Graphical representations of the six mathematical
models used in the investigation are shown in Figs.
1-6. The diameter of the stainless steel spherical
tank was 20 inches and the wall thickness was 0.060
inch for each model. The tank was assumed to be
supported by a ring at the horizontal diameter such
that translations were not permitted in any direc-
tion. The bladder was clamped to the stainless
steel tank at the ring level.

In using the NASTRAN program, the mercury pro-
pellant was modeled as fluid elements which are
treated as bodies of revolution. In Figs. 1-6,
these elements are designated by the 200 series num-
bers. The fluid element may have 2, 3, or 4 nodes.
In using the fluid elements in conjunction with the
structural elements in the NASTEAN program, symme-
try permits the specification of only a portion of
the structural model. In Fig 7, the structural
idealization of one quarter of the spherical shell
is shown. The elements were modeled with flat plate
elements. In Fig. 8, the structural idealization of
one quarter of the bladder for model 1 is shown.

Appropriate boundary conditions were specified
for the structural models to account for the use of
one quarter of the stainless steel tank and the
bladder for both the even and odd harmonics.

To model only one quarter ofthe structure, it
is necevsary to specify for the even harmonics that
at the initial and final edges, 9 = 0° and 90°,
the circumferential translational, and circumferen-
tial and longitudinal rotations are zero. For the
odd harmonics, the initial edge has the same bound-
ary conditions specified above. At 8 = 90°, the
radial and circumferential translations, and the
longitudinal rotation are specified as zero.

As an example, we have included in the appen-
dix a listing of the input cards for the second
harmonic for model 1.

Results

In table 1, the resonant . requencies for the
various models as a function of the Fourier Har-
monic numbers are given. The resu'ts show the ef-
fect of the amount of mercury and th. bladder shape
on the response. For the system studied in this
work, thelowest resonant frequency was found to be
0.593 hertz, which is favorably higher than the
lowest design frequency that is considered for the
spacecraft. (0.015 Hz the natugal frequency at the
root of the solar array drive.)

Conclusions and Recommendations

The results presented here indicate that the
NASTRAN program can be used to determine the reso-
nant frequencies of solid-fluid systems when the
structural configuration is known. The main compu-
tational deficiency discovered was the large amount
of computer time required to determine the resonant
frequencies. Some frequency determinations re-
quired two hours on the UNIVAC 1110 System. It is
not clear whether these time requirements were due
to the eigenvalue algorithms used in the NASTRAN
Program, its basic overhead and file structure, or
the speed of the UNIVAC machine itself. However,

a recent paper (Ref. 7) dealing with eigenvalue de-
determinations with the NASTRAN Program indicates
that more efficient algorithms would significantly
reduce the computing time.

The results presented here should be followed
with a parametric study to assess the influence of
the tank and bladder thicknesses. Another item
which should be studied is the effect of using
shell or three-dimensional brick elements to model
the tank and the bladder. Finally, a convergence
analysis must also be performed to insure that the
results obtained are valid.
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TABLE 1.

RESONANT FREQUENCIES FOR THE MERCURY PROPELLAMT TANK IN CYCLES PER SECOND

FOURIER MERCURY PROPELLANT RESONANT FRENUENCY, HERTZ
HARMONIC
NUMBER MODEL OF MERCURY PROPELLANT TANK SYSTEM
] 2 3 4 s [
N See Fig | - See Fig 2 - ]See Fig 3 - |[See Fig & - ee Fig § - See Fig 6 -
Ullage=1.5% [i1lage=2.8% Ullage=4.3%2 JUllage=8.1% 11age=28.2% JUllage=35.2%
1 0.7377 0.6174 0.7079 0.5926 1.0138 0.9594
2 0.8388 0.7436 0.8481 0.6749 1.1484 0.9726
3 1.4774 1.3673 1.4683 1.2951 1.8618 1.7459
& 1.8796 1.7555 1.8740 1.6025 2.53 2.278%
5 2.3086 2.2205 2.2963 2.0400 2.9574 2.8674
2.0084 1.9247 1.9910 1.7535 2.5533 2.3693
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Figure 1. - Model 1 of mercury propellant tank system.
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Figure 2. - Model 2 of mercury propellant tank system.
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Figure 3. - Model 3 of mercury propellant tank system.
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Figure 6. - Model of mercury propellant tank system.
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Figure 7. - One quarter model of stainless steel tank.
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Figure 8. - One quarter model of elastomeric bladder for model 1.
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