483 research outputs found

    Experimental observation of optical rotation generated in vacuum by a magnetic field

    Get PDF
    We report the experimental observation of a light polarization rotation in vacuum in the presence of a transverse magnetic field. Assuming that data distribution is Gaussian, the average measured rotation is (3.9+/-0.5)e-12 rad/pass, at 5 T with 44000 passes through a 1m long magnet, with lambda = 1064 nm. The relevance of this result in terms of the existence of a light, neutral, spin-zero particle is discussed.Comment: 11 pages, 4 figures, submitted to Physical Review Letters Comment to version 2: minor changes to abstract and final discussion. Added 2 references Comment to version 3: corrected minor typographical errors, eliminated the distinction between scalar and pseudoscalar in the particle interpretation of the resul

    New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum

    Full text link
    IIn 2006 the PVLAS collaboration reported the observation of an optical rotation generated in vacuum by a magnetic field. To further check against possible instrumental artifacts several upgrades to the PVLAS apparatus have been made during the last year. Two data taking runs, at the wavelength of 1064 nm, have been performed in the new configuration with magnetic field strengths of 2.3 T and 5 T. The 2.3 T field value was chosen in order to avoid stray fields. The new observations do not show the presence of a rotation signal down to the levels of 1.21081.2\cdot 10^{-8} rad at 5 T and 1.01081.0\cdot 10^{-8} rad at 2.3 T (at 95% c.l.) with 45000 passes in the magnetic field zone. In the same conditions no ellipticity signal was detected down to 1.41081.4\cdot 10^{-8} at 2.3 T (at 95% c.l.), whereas at 5 T a signal is still present. The physical nature of this ellipticity as due to an effect depending on B2B^2 can be excluded by the measurement at 2.3 T. These new results completely exclude the previously published magnetically induced vacuum dichroism results, indicating that they were instrumental artifacts. These new results therefore also exclude the particle interpretation of the previous PVLAS results as due to a spin zero boson. The background ellipticity at 2.3 T can be used to determine a new limit on the total photon-photon scattering cross section of σγγ<4.51034\sigma_{\gamma\gamma} < 4.5 \cdot10^{-34} barn at 95% c.l..Comment: 25 pages, 7 figures Main changes rel. to v.2: minor changes to abstract, replaced Figures 4,5,6, corrected typographical errors. Paper submitted to Physical Review

    Optical production and detection of dark matter candidates

    Get PDF
    The PVLAS collaboration is at present running, at the Laboratori Nazionali di Legnaro of I.N.F.N., Padova, Italy, a very sensitive optical ellipsometer capable of measuring the small rotations or ellipticities which can be acquired by a linearly polarized laser beam propagating in vacuum through a transverse magnetic feld (vacuum magnetic birefringence). The apparatus will also be able to set new limits on mass and coupling constant of light scalar/pseudoscalar particles coupling to two photons by both producing and detecting the hypothetical particles. The axion, introduced to explain parity conservation in strong interactions, is an example of this class of particles, all of which are considered possible dark matter candidates. The PVLAS apparatus consists of a very high finesse (> 140000), 6.4 m long, Fabry-Perot cavity immersed in an intense dipolar magnetic field (~6.5 T). A linearly polarized laser beam is frequency locked to the cavity and analysed, using a heterodyne technique, for rotation and/or ellipticity acquired within the magnetic field.Comment: presented at "Frontier Detectors for Frontier Physics - 8th Pisa Meeting on Advanced Detectors - May 21-27, 2000" to appear in: Nucl.Instr. and Meth.

    Limits on Low Energy Photon-Photon Scattering from an Experiment on Magnetic Vacuum Birefringence

    Full text link
    Experimental bounds on induced vacuum magnetic birefringence can be used to improve present photon-photon scattering limits in the electronvolt energy range. Measurements with the PVLAS apparatus (E. Zavattini {\it et al.}, Phys. Rev. D {\bf77} (2008) 032006) at both λ=1064\lambda = 1064 nm and 532 nm lead to bounds on the parameter {\it Ae_{e}}, describing non linear effects in QED, of Ae(1064)<6.61021A_{e}^{(1064)} < 6.6\cdot10^{-21} T2^{-2} @ 1064 nm and Ae(532)<6.31021A_{e}^{(532)} < 6.3\cdot10^{-21} T2^{-2} @ 532 nm, respectively, at 95% confidence level, compared to the predicted value of Ae=1.321024A_{e}=1.32\cdot10^{-24} T2^{-2}. The total photon-photon scattering cross section may also be expressed in terms of AeA_e, setting bounds for unpolarized light of σγγ(1064)<4.61062\sigma_{\gamma\gamma}^{(1064)} < 4.6\cdot10^{-62} m2^{2} and σγγ(532)<2.71060\sigma_{\gamma\gamma}^{(532)} < 2.7\cdot10^{-60} m2^{2}. Compared to the expected QED scattering cross section these results are a factor of 2107\simeq2\cdot10^{7} higher and represent an improvement of a factor about 500 on previous bounds based on ellipticity measurements and of a factor of about 101010^{10} on bounds based on direct stimulated scattering measurements

    From parental-fetal attachment to a parent-infant relationship: a systematic review about prenatal protective and risk factors

    Get PDF
    Developing an attachment to an unborn child is considered a milestone in the future parents’ developmental trajectory. Furthermore, the quality of the parent-fetus relationship is related to the quality of the postnatal parent-infant relationship. We have aimed to provide an overview of the recent findings highlighting factors that can influence parental prenatal attachment and the postpartum parent-child relationship. PubMed and PsycINFO were systematically explored looking for longitudinal studies, published from 2005 to 2016, reporting clearly the prenatal attachment measures used. We found 28 studies heterogeneous for sampling techniques, sample size and periods of assessment. Studies considered a broad range of individual, relational and contextual variables as potential risk or protective factors, but no one has of yet evaluated the interaction between them. The main focus remains on mothers. From these studies emerged conflicting and difficult to generalize results, and this does not facilitate the understanding of the phenomenon investigated. The current literature needs to be integrated with more longitudinal studies using comparable tools and periods of observation, at either a normal or at risk sample. There is also need for additional studies focused on fathers and couples, and considering the effects of the fetal behavior on the development of prenatal attachment

    Noncommutative Electrodynamics

    Get PDF
    In this paper we define a causal Lorentz covariant noncommutative (NC) classical Electrodynamics. We obtain an explicit realization of the NC theory by solving perturbatively the Seiberg-Witten map. The action is polynomial in the field strenght FF, allowing to preserve both causality and Lorentz covariance. The general structure of the Lagrangian is studied, to all orders in the perturbative expansion in the NC parameter θ\theta. We show that monochromatic plane waves are solutions of the equations of motion to all orders. An iterative method has been developed to solve the equations of motion and has been applied to the study of the corrections to the superposition law and to the Coulomb law.Comment: 13 pages, 2 figures, one reference adde

    Mechanical and electrical noise in the PVLAS experiment

    Get PDF
    PVLAS is an experiment which aims at the direct detection of photon-field scattering: it employs optical methods and a large rotating superconducting magnet, and its large, compact structure is affected by both mechanical and electrical noises. This paper introduces briefly the data analysis methods used in the experiment and summarizes the mechanical and electrical noise situation.Comment: 8 pages, 14 figures, PDF only, talk given by E. Milotti at the QNDE 2002 conference, Bellingham (WA), July 14-19 200

    Ultrafast Resonant Polarization Interferometry: Towards the First Direct Detection of Vacuum Polarization

    Full text link
    Vacuum polarization, an effect predicted nearly 70 years ago, is still yet to be directly detected despite significant experimental effort. Previous attempts have made use of large liquid-helium cooled electromagnets which inadvertently generate spurious signals that mask the desired signal. We present a novel approach for the ultra-sensitive detection of optical birefringence that can be usefully applied to a laboratory detection of vacuum polarization. The new technique has a predicted birefringence measurement sensitivity of Δn1020\Delta n \sim 10^{20} in a 1 second measurement. When combined with the extreme polarizing fields achievable in this design we predict that a vacuum polarization signal will be seen in a measurement of just a few days in duration.Comment: 9 pages, 2 figures. submitted to PR

    Signal Processing in the PVLAS Experiment

    Full text link
    Nonlinear interactions of light with light are well known in quantum electronics, and it is quite common to generate harmonic or subharmonic beams from a primary laser with photonic crystals. One suprising result of quantum electrodynamics is that because of the quantum fluctuations of charged fields, the same can happen in vacuum. The virtual charged particle pairs can be polarized by an external field and vacuum can thus become birefringent: the PVLAS experiment was originally meant to explore this strange quantum regime with optical methods. Since its inception PVLAS has found a new, additional goal: in fact vacuum can become a dichroic medium if we assume that it is filled with light neutral particles that couple to two photons, and thus PVLAS can search for exotic particles as well. PVLAS implements a complex signal processing scheme: here we describe the double data acquisition chain and the data analysis methods used to process the experimental data.Comment: presented by E. Milotti to the WSEAS-ISCGAV '05 Conference, Malta, 15-17/9/200
    corecore