63 research outputs found

    Widespread Distribution and Expression of Gamma A (UMB), an Uncultured, Diazotrophic, γ-Proteobacterial nifH Phylotype

    Get PDF
    Marine dinitrogen (N2) fixation studies have focused nearly exclusively on cyanobacterial diazotrophs; however γ-proteobacteria are an abundant component of the marine community and have been largely overlooked until recently. Here we present a phylogenetic analysis of all nifH γ-proteobacterial sequences available in public databases and qPCR data of a γ-proteobacterial phylotype, Gamma A (UMB), obtained during several research cruises. Our analysis revealed a complex diversity of diazotrophic γ-proteobacteria. One phylotype in particular, Gamma A, was described in several traditional and quantitative PCR studies. Though several γ-proteobacterial nifH sequences have been described as laboratory contaminants, Gamma A is part of a large cluster of sequences isolated from marine environments and distantly related to the clade of contaminants. Using a TaqMan probe and primer set, Gamma A nifH DNA abundance and expression were analyzed in nearly 1000 samples collected during 15 cruises to the Atlantic and Pacific Oceans. The data showed that Gamma A is an active, cosmopolitan diazotroph found throughout oxygenated, oligotrophic waters reaching maximum abundances of 8 × 104 nifH DNA copies l-1 and 5 × 105 nifH transcript copies l-1. Gamma A nifH transcript abundances were on average 3 fold higher than nifH DNA abundances. The widespread distribution and activity of Gamma A indicate that it has potential to be a globally important N2 fixing organism

    Genomics of alkaliphiles

    Get PDF
    Alkalinicity presents a challenge for life due to a “reversed” proton gradient that is unfavourable to many bioenergetic processes across the membranes of microorganisms. Despite this, many bacteria, archaea, and eukaryotes, collectively termed alkaliphiles, are adapted to life in alkaline ecosystems and are of great scientific and biotechnological interest due to their niche specialization and ability to produce highly stable enzymes. Advances in next-generation sequencing technologies have propelled not only the genomic characterization of many alkaliphilic microorganisms that have been isolated from nature alkaline sources but also our understanding of the functional relationships between different taxa in microbial communities living in these ecosystems. In this review, we discuss the genetics and molecular biology of alkaliphiles from an “omics” point of view, focusing on how metagenomics and transcriptomics have contributed to our understanding of these extremophiles.https://link.springer.com/bookseries/10hj2021BiochemistryGeneticsMicrobiology and Plant Patholog

    Microbial diversity and biogeochemical cycling in soda lakes

    Get PDF
    Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art ‘meta-omic’ techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments

    Hydrogen Content in Biogas as a State Indicator of Methanogenesis from Wastes

    No full text

    D

    No full text
    corecore