164 research outputs found

    Preserving Identity, Empowering Children: Whale Rider, Spirited Away, Frozen

    Get PDF
    The use of cultural studies methods such as textual analysis through diagnostic critique, to interpret and understand media culture and the political and social meanings and messages contained in film and television, offers insights into how cultures around the world are evolving into the 21st century. This paper looks at three films: Whale Rider, (New Zealand, 2002, directed by Niki Caro), Spirited Away, (Japan, 2001, directed by Hayao Miyasaki), and Frozen, (United States, 2013, directed by Chris Buck and Jennifer Lee), and analyzes representations of gender, culture, and identity, as well as the evolution, growth, and liberation of each film’s female protagonist(s) from repressive forces. Furthermore, this paper identifies and discusses aspects of these films that maintain common themes of oppression and discuss how these representations intersect and reinforce each other. This research utilizes diagnostic critique as method and engages with feminist theory as critical theory, to examine how traditional representation of gender and cultural identity, specifically in regard to existing social struggles and recent events are changing in an increasingly globalized and interconnected world. This paper puts forth that 21st century international films such as Whale Rider and Spirited Away contain powerful representations of gender empowerment and cultural preservation that reflect events of the late 20th and early 21st centuries and react to the homogenizing forces of globalization. Frozen encourages empowerment of the female; however, this empowerment is contingent upon traditional standards of Western beauty, sexuality, and race, and fails to offer effectively powerful cultural diversity

    Motility and Energy Taxis of Salmonella spp.

    Get PDF

    Proteome profiling by label‐free mass spectrometry reveals differentiated response of Campylobacter jejuni 81–176 to sublethal concentrations of bile acids.

    No full text
    Purpose Bile acids are crucial components of the intestinal antimicrobial defense and represent a significant stress factor for enteric pathogens. Adaptation processes of Campylobacter jejuni to this hostile environment are analyzed in this study by a proteomic approach. Experimental design Proteome profiling by label-free mass spectrometry (SWATH-MS) has been used to characterize the adaptation of C. jejuni to sublethal concentrations of seven bile acids. Results The bile acids with the lowest inhibitory concentration (IC50), deoxycholic and chenodeoxycholic acid, induce the most significant proteome changes. Overall a downregulation of all basic biosynthetic pathways and a general decrease in the transcription machinery are found. Concurrently, an induction of factors involved in detoxification of reactive oxygen species, protein folding, and bile acid exporting efflux pumps is detected. Exposure to deoxycholic and chenodeoxycholic acid results in an increased expression of components of the more energy-efficient aerobic respiration pathway, while the anaerobic branches of the electron transport chain are down-expressed. Conclusions and clinical relevance The results show that C. jejuni has a differentiated system of adaptation to bile acid stresses. The findings enhance the understanding of the pathogenesis of campylobacteriosis, especially for survival of C. jejuni in the human intestine, and may provide clues to future medical treatment

    Surface Rock Controls on the Development of Desert Varnish in the Mojave Desert

    Get PDF
    Desert varnish is a commonly occurring feature on surface rocks of stable landforms in arid regions. The objectives of this study were to investigate how desert varnish is related to the properties of the rocks on which it forms and how varnish is related to landform surface age and stability. To accomplish these objectives, approximately 350 varnished rocks from previously dated sites in the Mojave Desert were collected, photographed, converted to 3-D models, and analyzed to determine the extent, intensity, and patterns of desert varnish and how the desert varnish was related to land surface age and stability. Our results show a link between increasingly stronger varnish expression and both landform age and stability. We found a potential interaction between vesicular (V) horizons and the formation of the rubified ventral varnish. The rocks in this study showed a maximum varnish expression at a depth below the embedding plane that corresponded to the depth of V horizons when present and the lowest portion of the rock when absent. When V horizons were present, the varnish tended to be strongest near the lower boundary of these horizons. This interaction between the V horizons and location of maximum varnish expression on the rock may be due to the effect of V horizons on infiltration and the retention of water at those depths. The relationship between ventral rubification, rock size, and age shown in this study suggest that stable land surface environments (i.e., stable landforms and large surface rocks) create conditions needed for strongly expressed varnish. In the absence of traditional dating techniques, these relationships could be used to estimate the ages of Mojave Desert landforms

    YSMR : A video tracking and analysis program for bacterial motility

    Get PDF
    Background: Motility in bacteria forms the basis for taxis and is in some pathogenic bacteria important for virulence. Video tracking of motile bacteria allows the monitoring of bacterial swimming behaviour and taxis on the level of individual cells, which is a prerequisite to study the underlying molecular mechanisms. Results: The open-source python program YSMR (Your Software for Motility Recognition) was designed to simultaneously track a large number of bacterial cells on standard computers from video files in various formats. In order to cope with the high number of tracked objects, we use a simple detection and tracking approach based on grey-value and position, followed by stringent selection against suspicious data points. The generated data can be used for statistical analyses either directly with YSMR or with external programs. Conclusion: In contrast to existing video tracking software, which either requires expensive computer hardware or only tracks a limited number of bacteria for a few seconds, YSMR is an open-source program which allows the 2-D tracking of several hundred objects over at least 5 minutes on standard computer hardware. The code is freely available at https://github.com/schwanbeck/YSMR © 2020 The Author(s)

    Chimaeribacter arupi a new member of the Yersineacea family has the characteristics of a human pathogen

    Get PDF
    Chimaeribacter arupi (heterotypic synonym: “Nissabacter archeti”) is a facultative anaerobic, newly described Gram-negative rod and belongs to the Yersineacea family. Here, we report the case of a 19-month-old female infant patient who presented to the emergency unit with somnolence and fever. C. arupi was isolated from a positive blood culture, taken via an implanted Broviac catheter, proving a bloodstream infection by the pathogen. The objective of this study was to utilize whole genome sequencing to assess the genes encoding potential virulence associated factors, which may play a role in host tropism, tissue invasion and the subsequent stages in the pathogenesis of a bloodstream infection with C. arupi. The genome of the isolate was completely sequenced employing Illumina MiSeq and Nanopore MinION sequencing and the presumptive virulence associated factors and antimicrobial resistance genes were investigated in more detail. Additionally, we performed metabolic profiling and susceptibility testing by microdilution. The presence of predicted TcfC-like α-Pili suggests that C. arupi is highly adapted to humans as a host. It utilizes flagellar and type IV pili-mediated motility, as well as a number of γ1-pili and a σ-pilus, which may be used to facilitate biofilm formation and adherence to host epithelia. Additionally, long polar fimbriae may aid in tissue invasion. The bacterium possesses antioxidant factors, which may enable temporary survival in phagolysosomes, and a capsule that potentially provides protection from phagocytosis. It may acquire iron ions from erythrocytes through the type 6 secretion system and hemolysins. Furthermore, the isolate exhibits beta-lactamase-mediated penicillin and aminopenicillin resistance. Based on the analysis of the whole genome, we conclude that C. arupi possesses virulence factors associated with tissue invasion and may thus be a potential opportunistic pathogen of bloodstream infections

    Artificially designed pathogens – a diagnostic option for future military deployments

    Get PDF
    Diagnostic microbial isolates of bio-safety levels 3 and 4 are difficult to handle in medical field camps under military deployment settings. International transport of such isolates is challenging due to restrictions by the International Air Transport Association. An alternative option might be inactivation and sequencing of the pathogen at the deployment site with subsequent sequence-based revitalization in well-equipped laboratories in the home country for further scientific assessment. A literature review was written based on a PubMed search. First described for poliovirus in 2002, de novo synthesis of pathogens based on their sequence information has become a well-established procedure in science. Successful syntheses have been demonstrated for both viruses and prokaryotes. However, the technology is not yet available for routine diagnostic purposes. Due to the potential utility of diagnostic sequencing and sequence-based de novo synthesis of pathogens, it seems worthwhile to establish the technology for diagnostic purposes over the intermediate term. This is particularly true for resource-restricted deployment settings, where safe handling of harmful pathogens cannot always be guaranteed. peerReviewed Document type: Articl

    Intracellular Persisting Staphylococcus aureus Is the Major Pathogen in Recurrent Tonsillitis

    Get PDF
    BACKGROUND: The two major indications for tonsillectomy are recurrent tonsillitis (RT) and peritonsillar abscess (PTA). Unlike PTAs, which are primarily treated surgically, RT is often cured by tonsillectomy only after a series of failed drug therapy attempts. Although the bacteriological background of RT has been studied, the reason for the lack of success of conservative therapeutic approaches is not well understood. METHODS: In a prospective study, tonsil specimens from 130 RT patients and 124 PTA patients were examined for the presence of extra- and intracellular bacteria using antibiotic protection assays. Staphylococcus aureus isolates from RT patients were characterized by pulsed-field gel electrophoresis (PFGE), spa-typing and MSCRAMM-gene-PCR. Their ability for biofilm formation was tested and their cell invasiveness was confirmed by a flow cytometric invasion assay (FACS), fluorescent in situ hybridization (FISH) and immunohistochemistry. FINDINGS: S. aureus was the predominant species (57.7%) in RT patients, whereas Streptococcus pyogenes was most prevalent (20.2%) in PTA patients. Three different assays (FACS, FISH, antibiotic protection assay) showed that nearly all RT-associated S. aureus strains were located inside tonsillar cells. Correspondingly, the results of the MSCRAMM-gene-PCRs confirmed that 87% of these S. aureus isolates were invasive strains and not mere colonizers. Based upon PFGE analyses of genomic DNA and on spa-gene typing the vast majority of the S. aureus isolates belonged to different clonal lineages. CONCLUSIONS: Our results demonstrate that intracellular residing S. aureus is the most common cause of RT and indicate that S. aureus uses this location to survive the effects of antibiotics and the host immune response. A German translation of the Abstract is provided as supplementary material (Abstract S1)

    Unexpected differential metabolic responses of Campylobacter jejuni to the abundant presence of glutamate and fucose

    Get PDF
    Introduction: Campylobacter jejuni is the leading cause of foodborne bacterial enteritis in humans, and yet little is known in regard to how genetic diversity and metabolic capabilities among isolates affect their metabolic phenotype and pathogenicity. Objectives: For instance, the C. jejuni 11168 strain can utilize both l-fucose and l-glutamate as a carbon source, which provides the strain with a competitive advantage in some environments and in this study we set out to assess the metabolic response of C. jejuni 11168 to the presence of l-fucose and l-glutamate in the growth medium. Methods: To achieve this, untargeted hydrophilic liquid chromatography coupled to mass spectrometry was used to obtain metabolite profiles of supernatant extracts obtained at three different time points up to 24 h. Results: This study identified both the depletion and the production and subsequent release of a multitude of expected and unexpected metabolites during the growth of C. jejuni 11168 under three different conditions. A large set of standards allowed identification of a number of metabolites. Further mass spectrometry fragmentation analysis allowed the additional annotation of substrate-specific metabolites. The results show that C. jejuni 11168 upon l-fucose addition indeed produces degradation products of the fucose pathway. Furthermore, methionine was faster depleted from the medium, consistent with previously-observed methionine auxotrophy. Conclusions: Moreover, a multitude of not previously annotated metabolites in C. jejuni were found to be increased specifically upon l-fucose addition. These metabolites may well play a role in the pathogenicity of this C. jejuni strain.</p
    corecore