
SOFTWARE Open Access

YSMR: a video tracking and analysis
program for bacterial motility
Julian Schwanbeck1* , Ines Oehmig1, Jerôme Dretzke2, Andreas E. Zautner1, Uwe Groß1 and Wolfgang Bohne1

* Correspondence: julian.
schwanbeck@med.uni-goettingen.
de
1Institute for Medical Microbiology,
University Medical Center
Göttingen, Göttingen, Germany
Full list of author information is
available at the end of the article

Abstract

Background: Motility in bacteria forms the basis for taxis and is in some pathogenic
bacteria important for virulence. Video tracking of motile bacteria allows the
monitoring of bacterial swimming behaviour and taxis on the level of individual cells,
which is a prerequisite to study the underlying molecular mechanisms.

Results: The open-source python program YSMR (Your Software for Motility
Recognition) was designed to simultaneously track a large number of bacterial cells
on standard computers from video files in various formats. In order to cope with the
high number of tracked objects, we use a simple detection and tracking approach
based on grey-value and position, followed by stringent selection against suspicious
data points. The generated data can be used for statistical analyses either directly
with YSMR or with external programs.

Conclusion: In contrast to existing video tracking software, which either requires
expensive computer hardware or only tracks a limited number of bacteria for a few
seconds, YSMR is an open-source program which allows the 2-D tracking of several
hundred objects over at least 5 minutes on standard computer hardware.
The code is freely available at https://github.com/schwanbeck/YSMR

Keywords: Bacterial motility, Video tracking, openCV, Python, Video microscopy, 2D
object tracking, Open-source software, Multi-object tracking

Background
Bacteria developed different types of motility, most of them driven by flagella or pili.

The molecular processes that regulate motility in bacteria are an active area in re-

search, as they form the basis for dispersion, tactile processes, and virulence in some

pathogenic bacteria [1].

The particular type of bacterial swimming varies significantly among bacterial species

and depends on the number of flagella and their distribution on the bacterial cell body

[2]. The best studied example is the “run and tumble” motility type of Escherichia coli, in

which counter clockwise rotation of flagella leads to a run phase, while clockwise rotation

leads to a tumbling phase with a random cell rotation [3]. However, in recent years add-

itional motility types were discovered, as the “forward-revers-flick” motility type in Vibrio

alginolyticus [4] or the “stop-and-coil” type in Rhodobacter sphaeroides [5].

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Schwanbeck et al. BMC Bioinformatics (2020) 21:166
https://doi.org/10.1186/s12859-020-3495-9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutionelles Repositorium der Leibniz Universität Hannover

https://core.ac.uk/display/440962839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-3495-9&domain=pdf
http://orcid.org/0000-0003-2803-0167
mailto:julian.schwanbeck@med.uni-goettingen.de
mailto:julian.schwanbeck@med.uni-goettingen.de
mailto:julian.schwanbeck@med.uni-goettingen.de
https://github.com/schwanbeck/YSMR
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

To study bacterial motility pattern, microscopic monitoring and analysis of single cell

motility is required. Manual analysis of motility videos increases the risk of inadvertent

cherry picking, as well as being tedious. The application of video tracking software is

thus advisable for the quantification of various motility parameters such as the average

speed, the length of travel paths, the time of swimming and tumbling, arc-chord ratio,

percentage of immotile cells, and preferred direction of travel.

To our knowledge, video tracking software, which can be used for this purpose, have

been designed with a high priority on tracking accuracy, as for example TrackMate2

[6], or require additional licences to be used [7].

However, a high accuracy tracking program monitors several parameters per tracked

object per frame and can quickly run into hardware limitations, when several hundred

objects are simultaneously analysed. Using such programs forces the user to choose be-

tween fewer cells per frame or shorter videos in order to be still functional.

We therefore felt the need for an open-source tracking program, which uses only

simple parameters for tracking, in order to be able to cope with the large amount of

tracked objects for at least 5 minutes. Here, we use the grey value of the bacterium for

detection, and the distance between frames for tracking. As the sample size is very

large, typically in the range of several hundred bacteria per frame, the loss of tracked

objects is less important. After initial tracking, we subsequently filter out questionable

data points and tracks in multiple steps. We also include the possibility for statistical

analysis of the generated data.

Software

File requirements

During the initial setup, YSMR requires various parameters to be set in an automatic-

ally generated settings file, “tracking.ini”. The file was created with the idea in mind

that it should be simple to set the basic values, but still allow for more in-depth config-

urations. Basic required settings are pixel per micrometre factor, frames per second,

frame dimensions, whether the bacteria are brighter or darker than the background, as

well as whether rod shaped or coccoid bacteria are tracked.

In order to take advantage from multi-core CPUs, YSMR is designed to handle a

video file per available processor core in parallel. Files can be loaded by specifying them

in the file dialog, as arguments for the YSMR function, or by specifying the path in the

tracking.ini file. The user has to provide a video file in any format accepted by ffmpeg.

We so far successfully tested .wmv, .avi, .mov, .mp4, and .mkv.

Bacteria detection by grey value

Recorded bacteria can be either brighter or darker than the background. The program

reads one frame at a time. During the process of bacterial detection, the frame is first

converted into grey-scale (see Fig. 1 a & b). The noise in the frame is reduced by a 2D

Gaussian blur in order to reduce the rate of false positive areas (Fig. 1 c). are set using

an adaptive threshold with an 11 by 11 Gaussian kernel (Fig. 1 d). In order to exclude

erroneous detections, a second adaptive Gaussian threshold with an increased threshold

is used to generate marker positions (Fig. 1 e). Whenever no white area from Fig. 1 e is

contained within a white area from Fig. 1 d, that area is disregarded. From this, the

Schwanbeck et al. BMC Bioinformatics (2020) 21:166 Page 2 of 8

frame depicted in Fig. 1 f is generated. The outermost points of the edges in Fig. 1 f are

then used to create a rectangle and each newly generated rectangle receives a unique

ID (Fig. 1 g). The centre-point of the rectangle (named “tracking target”) is set as the

x-, y-coordinate of the bacterium, which is used for tracking.

Optionally, either simple adaptive thresholding, without the marker based approach,

or simple thresholding based on the grey value of the frame can be used. For simple

thresholding, the average grey value of the entire frame, its standard deviation, as well

as a user definable offset is used to calculate a threshold value. To reduce fluctuations

in the threshold, a moving average over a timeframe of 5 s is used. Using the previously

Fig. 1 From original frame to final detection. a: the original frame from the video file. b: the frame is
converted to grey scale. c: a Gaussian blur with a 3 by 3 kernel is applied. d: the adaptive threshold is
applied, leaving white areas as potential bacteria. e: a second, higher, adaptive threshold is applied to
generate markers. f: white areas from d which contain markers from E are used as outlines. g: each area is
encased in a rectangle and assigned a unique ID, displayed on the original frame

Schwanbeck et al. BMC Bioinformatics (2020) 21:166 Page 3 of 8

calculated threshold value, the frame is converted to a binary black and white image in

which bacteria are always defined as white areas which are subsequently used for edge

detection.

The tracking process

Tracking is performed by calculating the distances of all tracking targets between each

frame and joining the neighbours with the least distance between frames. In addition, a

Gaussian sum finite impulse response filter using a constant velocity model is used to

filter the measured signal as well as to produce predictions of positions for tracking [8].

When a new frame has more tracking targets than a previous frame, new IDs are

assigned to the additional tracking targets. Tracking targets which cannot be assigned

will be given the width and height dimensions of 0.0 for missing frames, while their last

predicted x-, y-coordinate will be used for tracking. Centre-points that cannot be

assigned within 1 second of the last detection will be removed. The generated informa-

tion per frame, consisting of ID, filtered position, width, height, time, and rotation

angle, is periodically saved to disc in a .csv file. When all frames have been read, the

resulting .csv file is sorted by ID and time.

Track selection

The data is then loaded as a pandas data frame and all tracks are checked for plausibil-

ity or errors before further calculations are performed. Track selection is performed in

two parts, as some erroneous data points as well as entirely too short tracks can be ex-

cluded directly, which saves processing time and increases precision in the secondary

finer selection step.

(i) In the initial step, entire tracks are discarded. This includes all tracks whose

bounding rectangles are on average below or above user specified bacterial size limits.

The lower limit discards most events which have a small bounding rectangle for a few

frames, followed by frames with an area of zero for 1 second, averaging close to zero in

total. The upper limit excludes areas of bright spots caused by dirt, chromatic aberra-

tions in the microscope, or other unwanted objects. We find that using a lower limit of

20% of the average bacterial size in px2 and an upper limit of five times that area can

be used as a rule of thumb for the initial broad exclusion limits. When a user defined

minimum tracking time is given, all tracks below this limit at this stage are also

excluded.

(ii) In the second step, erroneous single measurements are deleted. This includes all

single measurement points where the area is zero. This is caused by the tracker, which

zeros width and height when the track cannot be linked in between frames. The pos-

ition given at such points is the last predicted position.

(iii) Optionally, single data points can be excluded if they surpass a specified multiple

of the average bounding rectangle area of a track. This can occur when bacteria over-

lap, which increases the size of the bounding rectangle by the area of the second bac-

terium. In this case, one bacterium is erroneously assigned a larger size, while the other

cannot be tracked.

After removing erroneous data points and tracks, each track is sequentially filtered

through user defined criteria. A count of how often a track has been excluded through

Schwanbeck et al. BMC Bioinformatics (2020) 21:166 Page 4 of 8

each criterion is reported afterwards. We will hereafter refer to removed measurement

points as “gaps” in the measurement. The following criteria are included: (iv) first, the

duration in time of the track must be above a user defined minimum time limit, if one

is specified. (v) The track may not have more than a set amount of consecutive frame

gaps, which ensures continuous tracking. (vi) Optionally, distance outliers within tracks

can be calculated. Outliers are defined as those above the outer fence of all distances.

As this is prone to error when too many tracked objects are immotile, the feature can

optionally disable itself if the detected outliers are above a specified percentage of all

data points. If too large consecutive gaps in measurement or distance outliers are

present, the track is split and both halves are analysed again, starting at the first check.

(vii) The data points of the track may not have more than a user defined percentage of

gaps. (viii) The average bacterial size within a track can be used as an exclusion param-

eter. If the average size is outside a percentile of all size measurements, the track is ex-

cluded. The percentile is also defined by the user. Area outliers missed by the hard

limit of the initial sorting step ‘i’ are excluded at the possible expense of excluding a

fraction of correct tracks. (ix) The average position of the track must not be within a

given percentage of the screen edges. These tracks can be excluded as a precaution,

since IDs near the screen edges could be wrongly reassigned when other bacteria enter

the frame.

If all checks are passed, the track is added to the results. If a track was split and sev-

eral parts pass the checks, the longest part is selected and all others are discarded. Op-

tionally, tracks can be limited to a user defined maximal duration. When an upper time

limit is set the track is shortened to the exact duration or, if a gap is at that position,

the closest data point below the set time limit. This behaviour can be changed so that

shortened tracks which fall below the limit are discarded instead.

Data processing, analysis and illustration

The tracking process can either be displayed during analysis or saved as an .avi file

encoded in MJPEG. The generated raw data from the tracking, the results from the

subsequent fine selection, as well as the results from the statistical analysis can each be

saved as an individual .csv file. The statistical analysis .csv files can also as a conveni-

ence function be collated into a .xlsx file.

Tracks can be graphically visualized in a coordinate graph with a marker at the start-

ing position, or as a rose graph with starting x−/y-coordinates set to 0,0. In each case,

the tracks are coloured depending on travelled distance.

Tracks can be analysed for the following parameter: (i) total travelled distance (μm),

(ii) speed (μm/s), (iii) duration (s), (iv) maximum distance between tracked positions

(μm), (v) percentage of time where bacterium was motile, (vi) turn points per second,

and (vii) arc-chord ratio. Generated statistics can be displayed as violin plots.

Comparison to TrackMate

TrackMate is a widely used tracking program designed for sub-pixel localisation and

tracking of eukaryotic cells [6]. Smaller objects, such as bacteria, can also be tracked. It

is in contrast to YSMR a semi-automatic application requiring user supervision and in-

put during tracking. A further limitation is the maximum video length when tracking a

Schwanbeck et al. BMC Bioinformatics (2020) 21:166 Page 5 of 8

large number of objects due to increasing RAM requirements. We compared the per-

formance and results between YSMR and TrackMate on the example video which was

shortened to 30 s (Supplementary Fig. 1, Supplementary Video 1, and Supplementary

Table 1). The analysis was done in comparable time (YSMR 140.5 s, TrackMate 141.8 s)

with default options for YSMR. However, YSMR used fewer computational resources,

since it is designed for parallel analysis of multiple videos. YSMR used only one thread,

whereas TrackMate used four. The peak RAM usage was 6.3 GB for TrackMate and

1.1 GB for YSMR. Comparing the results, when overlaid, YSMR detects 91.1% of all po-

sitions that overlap with those detected by TrackMate. Mean values for speed, distance,

displacement, arc-chord ratio, and percentage of motility are in a similar range with

variations between 6.23 and 19.81% of the means (Supplementary Table 1).

Discussion and conclusion
YSMR is a python program for generating tracking data and statistics from video files

depicting motile bacteria. It offers the possibility to determine and quantify the most

relevant bacterial motility parameters, for example total travelled distance, speed, per-

centage of time where bacteria are motile and turn points per second, among others. A

thorough analysis of these data can provide the basis for novel insights into the motility

behaviour of bacteria and its regulation.

Existing tracking programs have a focus on the high accuracy of generated tracking

trails from video files and were often performed on very small sample sizes, due to the

need to track single cells frame-by-frame throughout the video. In contrast, YSMR is

optimized for the simultaneous tracking of a very large number of bacteria, typically in

the range of 100–1000 per frame from video files generated with a 10x objective. YSMR

is based on a moderate fidelity, high selectivity approach, which keeps the processing

time short. Instead of using computational intensive approaches for bacterial detection,

for example machine learning, we found that the detection could be reduced to a very

simple approach, namely finding bacteria by grey value threshold. We concluded that

we could simplify the whole process down to the described detection and tracking

mechanism, as long as in a secondary step we rigorously select against suspect data

points. The entire process is inexpensive enough to be run on standard desktop com-

puters and was adapted to take advantage of multicore processors for parallelisation.

In our setup, efficient tracking of flagellated Bacillus subtilis was possible with YSMR

by using video files generated with a 30 fps camera (Aptina CMOS Sensor 18MP 1/

2.3″ Color) on a microscope with a 10x objective (Nikon Eclipse TE2000-S, Nikon

PlanFluor 10x). The comparatively large depth of the focal plane of a 10x objective

minimizes the number of bacteria that move out of focus during tracking. A frequent

experimental design is to analyse bacterial motility statistics for a population under

varying conditions (for example different pH, nutrient availability, growth phase, or cell

densities). YSMR can analyse generated video files for this purposes quickly and in par-

allel. On the other hand, if the exact motility pattern of single bacteria, the movement

in 3D, or bacteria-bacteria interaction is of interest, or the cell density is below 50 ob-

jects per frame, other programs with higher tracking accuracy might be a better choice.

To assess the performance of YSMR for a given task, the debug option lets the user re-

view the detection process. For a straightforward assessment of the generated data, the

save video option displays the generated measurements directly on the original video.

Schwanbeck et al. BMC Bioinformatics (2020) 21:166 Page 6 of 8

YSMR was optimized to analyse bacterial motility statistics from a large number of bac-

teria in short time. Even if more precision is required, YSMR can still be used as a sim-

ple and quick pre-screening in order to select files for more complex and time

consuming processes.

Availability and requirements

Project name: YSMR v 0.1.0.

Project home page: https://github.com/schwanbeck/YSMR

Operating systems: Platform independent.

Programming Language: Python ≥3.6.

Other requirements: opencv (opencv-contrib-python/opencv-python v3/v4, v2 un-

tested), numpy, pandas, tkinter, matplotlib, scipy, seaborn.

Optional: xlsxwriter.

License: GNU GPL v3.0.

Any restrictions to use by non-academics: None.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3495-9.

Additional file 1: Supplementary Video 1. A video of motile Bacillus subtilis 168 in LB. The video was taken
with a 30 fps camera (Aptina CMOS Sensor 18MP 1/2.3″ Color) on a microscope with a 10x objective (Nikon Eclipse
TE2000-S, Nikon PlanFluor 10x).

Additional file 2: Supplementary Figure S1. Comparison between tracked positions of YSMR and TrackMate.
All x- and y-axes are in pixel. The example Video (supplementary Video 1) was truncated to 30 s, as TrackMate can-
not analyse the full video. Each frame was converted to 8 bit grey scale .tiff files. The images were loaded into Fiji
and subsequently tracked with TrackMate. We applied no filters to the results generated by TrackMate. The first 10
s of the results were overlaid with those generated with YSMR for the same section of the video in supplemen-
tary Figure 1 A. The position of five randomly picked tracks, which were compared in detail between TrackMate
and YSMR (Fig. 1 B-F) are marked with blue arrows. Spots in orange were only identified by YSMR (2.87% of all
spots). Spots in black were only identified by TrackMate (67.78% of all spots). Spots in green were identified by
both (29.35% of all spots). Supplementary Figure 1 B-F. show individual tracks in direct comparison with YSMR
in orange and TrackMate in black. The majority of tracks which were only recognised by TrackMate and not by
YSMR are located in the periphery. For YSMR the standard settings for track selection were used, which actively
removes tracks which are mainly near the frame edges in addition to otherwise questionable tracks, leaving only
high quality tracks. This explains the lower number of tracks recognised by YSMR compared to TrackMate in this
example.

Additional file 3: Supplementary Table S1. A comparison between results generated by TrackMate and YSMR.
All tracks with a duration between 5 and 10 s were selected and the mean of motility parameter was calculated.

Abbreviations
ACR: Arc-chord ratio; CPU: Central processing unit; FIR: Finite impulse response filter; GB: Gigabyte; GSFF: Gaussian-sum
finite impulse response filter; ID: Identifier; IQR: Interquartile range; LSFF: Least square finite impulse response filter;
MJPEG: Motion JPEG; OS: Operating system; YSMR: Your Software for Motility Recognition; csv: Comma-separated
values file; fps: Frames per second; pH: Power of hydrogen, negative base 10 logarithm of the concentration of
hydrogen; px: Pixel

Acknowledgements
We would like to thank Prof. Burkhard Morgenstern for reading the manuscript and supporting the project. We would
like to thank Avril von Hoyningen-Huene for proofreading and providing corrections for the manuscript.

Authors’ contributions
JS was the main developer of YSMR. IO performed the laboratory work. JD implemented the Gaussian-sum FIR filter in
Python and tested it. AZ, UG and WB tested the application on various systems, contributed ideas, supervised the pro-
ject and were involved in the preparation of the manuscript. All authors read and approved the final manuscript.

Funding
This work was funded by the Federal State of Lower Saxony, Niedersächsisches Vorab (VWZN2889/3215/3266). The
funding body had no role in the design of the study or writing the manuscript; nor the collection, analysis, or
interpretation of data.

Schwanbeck et al. BMC Bioinformatics (2020) 21:166 Page 7 of 8

https://github.com/schwanbeck/YSMR
https://doi.org/10.1186/s12859-020-3495-9

Availability of data and materials
An example video of Bacillus subtilis is provided in the supplementary.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The Authors declare no conflict of interest.

Author details
1Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany. 2Institute of Applied
Mathematics, Leibniz University Hannover, Hannover, Germany.

Received: 28 August 2019 Accepted: 15 April 2020

References
1. Watts KJ, Vaknin A, Fuqua C, Kazmierczak BI. New Twists and Turns in Bacterial Locomotion and Signal Transduction. J

Bacteriol. 2019; July. doi:10.1128/JB.00439-19.
2. Bastos-Arrieta J, Revilla-Guarinos A, Uspal WE, Simmchen J. Bacterial Biohybrid Microswimmers. Front Robot AI. 2018;5:1–

16. doi:10.3389/frobt.2018.00097.
3. Sarkar MK, Paul K, Blair D. Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of

flagellar rotation in Escherichia coli. Proc Natl Acad Sci. 2010;107:9370–5.
4. Xie L, Altindal T, Chattopadhyay S, Wu X-L. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis.

Proc Natl Acad Sci. 2011;108:2246–51.
5. Haya S, Tokumaru Y, Abe N, Kaneko J, Aizawa SI. Characterization of lateral flagella of Selenomonas ruminantium. Appl

Environ Microbiol. 2011;77:2799–802.
6. Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, et al. TrackMate: an open and extensible

platform for single-particle tracking. Methods. 2017;115:80–90. doi:10.1016/j.ymeth.2016.09.016.
7. Taute KM, Gude S, Tans SJ, Shimizu TS. High-throughput 3D tracking of bacteria on a standard phase contrast

microscope. Nat Commun. 2015:8776. doi:10.1038/ncomms9776.
8. Pak JM. Gaussian sum FIR filtering for 2D target tracking. Int J Control Autom Syst 2019;17:1–7. doi:10.1007/s12555-018-

0938-4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Schwanbeck et al. BMC Bioinformatics (2020) 21:166 Page 8 of 8

	Abstract
	Background
	Results
	Conclusion

	Background
	Software
	File requirements
	Bacteria detection by grey value
	The tracking process
	Track selection

	Data processing, analysis and illustration
	Comparison to TrackMate

	Discussion and conclusion
	Availability and requirements

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

