9 research outputs found

    Probing the anomalous dynamical phase in long-range quantum spin chains through Fisher-zero lines

    Full text link
    Using the framework of infinite Matrix Product States, the existence of an \textit{anomalous} dynamical phase for the transverse-field Ising chain with sufficiently long-range interactions was first reported in [J.~C.~Halimeh and V.~Zauner-Stauber, arXiv:1610:02019], where it was shown that \textit{anomalous} cusps arise in the Loschmidt-echo return rate for sufficiently small quenches within the ferromagnetic phase. In this work we further probe the nature of the anomalous phase through calculating the corresponding Fisher-zero lines in the complex time plane. We find that these Fisher-zero lines exhibit a qualitative difference in their behavior, where, unlike in the case of the regular phase, some of them terminate before intersecting the imaginary axis, indicating the existence of smooth peaks in the return rate preceding the cusps. Additionally, we discuss in detail the infinite Matrix Product State time-evolution method used to calculate Fisher zeros and the Loschmidt-echo return rate using the Matrix Product State transfer matrix. Our work sheds further light on the nature of the anomalous phase in the long-range transverse-field Ising chain, while the numerical treatment presented can be applied to more general quantum spin chains.Comment: Journal article. 9 pages and 6 figures. Includes in part what used to be supplemental material in arXiv:1610:0201

    Quasiparticle origin of dynamical quantum phase transitions

    Full text link
    Considering nonintegrable quantum Ising chains with exponentially decaying interactions, we present matrix product state results that establish a connection between low-energy quasiparticle excitations and the kind of nonanalyticities in the Loschmidt return rate. When domain walls in the spectrum of the quench Hamiltonian are energetically favored to be bound rather than freely propagating, anomalous cusps appear in the return rate regardless of the initial state. In the nearest-neighbor limit, domain walls are always freely propagating, and anomalous cusps never appear. As a consequence, our work illustrates that models in the same equilibrium universality class can still exhibit fundamentally distinct out-of-equilibrium criticality. Our results are accessible to current ultracold-atom and ion-trap experiments.Comment: 9 pages, 8 figures, accepted versio

    Prethermalization and Persistent Order in the Absence of a Thermal Phase Transition

    Get PDF
    We numerically study the dynamics after a parameter quench in the one-dimensional transverse-field Ising model with long-range interactions (1/rα\propto 1/r^\alpha with distance rr), for finite chains and also directly in the thermodynamic limit. In nonequilibrium, i.e., before the system settles into a thermal state, we find a long-lived regime that is characterized by a prethermal value of the magnetization, which in general differs from its thermal value. We find that the ferromagnetic phase is stabilized dynamically: as a function of the quench parameter, the prethermal magnetization shows a transition between a symmetry-broken and a symmetric phase, even for those values of α\alpha for which no finite-temperature transition occurs in equilibrium. The dynamical critical point is shifted with respect to the equilibrium one, and the shift is found to depend on α\alpha as well as on the quench parameters.Comment: 6 pages, 4 figure

    Dynamical phase diagram of quantum spin chains with long-range interactions

    Full text link
    corecore