757 research outputs found

    Minimal Cosmogenic Neutrinos

    Full text link
    The observed flux of ultra-high energy (UHE) cosmic rays (CRs) guarantees the presence of high-energy cosmogenic neutrinos that are produced via photo-hadronic interactions of CRs propagating through intergalactic space. This flux of neutrinos doesn't share the many uncertainties associated with the environment of the yet unknown CR sources. Cosmogenic neutrinos have nevertheless a strong model dependence associated with the chemical composition, source distribution or evolution and maximal injection energy of UHE CRs. We discuss a lower limit on the cosmogenic neutrino spectrum which depends on the observed UHE CR spectrum and composition and relates directly to experimentally observable and model-independent quantities. We show explicit limits for conservative assumptions about the source evolution.Comment: 6 pages, 3 figure

    Testing Lorentz Invariance with Ultra High Energy Cosmic Ray Spectrum

    Full text link
    The GZK cutoff predicted at the Ultra High Energy Cosmic Ray (UHECR) spectrum as been observed by the HiRes and Auger experiments. The results put severe constraints on the effect of Lorentz Invariance Violation(LIV) which has been introduced to explain the absence of GZK cutoff indicated in the AGASA data. Assuming homogeneous source distribution with a single power law spectrum, we calculate the spectrum of UHECRs observed on Earth by taking the processes of photopion production, e+ee^+e^- pair production and adiabatic energy loss into account. The effect of LIV is also taken into account in the calculation. By fitting the HiRes monocular spectra and the Auger combined spectra, we show that the LIV parameter is constrained to ξ=0.80.5+3.2×1023\xi=-0.8^{+3.2}_{-0.5}\times10^{-23} and 0.00.4+1.0×10230.0^{+1.0}_{-0.4}\times10^{-23} respectively, which is well consistent with strict Lorentz Invariance up to the highest energy.Comment: Accepted for publication in Physical Review D 12 pages, 4 figure

    Neutrinos: the Key to UHE Cosmic Rays

    Full text link
    Observations of ultrahigh energy cosmic rays (UHECR) do not uniquely determine both the injection spectrum and the evolution model for UHECR sources - primarily because interactions during propagation obscure the early Universe from direct observation. Detection of neutrinos produced in those same interactions, coupled with UHECR results, would provide a full description of UHECR source properties.Comment: three pages, three figures. corrected typo

    Towards a model of population of astrophysical sources of ultra-high-energy cosmic rays

    Full text link
    We construct and discuss a toy model of the population of numerous non-identical extragalactic sources of ultra-high-energy cosmic rays. In the model, cosmic-ray particles are accelerated in magnetospheres of supermassive black holes in galactic nuclei, the key parameter of acceleration being the black-hole mass. We use astrophysical data on the redshift-dependent black-hole mass function to describe the population of these cosmic-ray accelerators, from weak to powerful, and confront the model with cosmic-ray data.Comment: 9 pages, 4 figures, Revtex 4.

    Acceptance of fluorescence detectors and its implication in energy spectrum inference at the highest energies

    Full text link
    Along the years HiRes and AGASA experiments have explored the fluorescence and the ground array experimental techniques to measure extensive air showers, being both essential to investigate the ultra-high energy cosmic rays. However, such Collaborations have published contradictory energy spectra for energies above the GZK cut-off. In this article, we investigate the acceptance of fluorescence telescopes to different primary particles at the highest energies. Using CORSIKA and CONEX shower simulations without and with the new pre-showering scheme, which allows photons to interact in the Earth magnetic field, we estimate the aperture of the HiRes-I telescope for gammas, iron nuclei and protons primaries as a function of the number of simulated events and primary energy. We also investigate the possibility that systematic differences in shower development for hadrons and gammas could mask or distort vital features of the cosmic ray energy spectrum at energies above the photo-pion production threshold. The impact of these effects on the true acceptance of a fluorescence detector is analyzed in the context of top-down production models

    UHECR Particle Spectra from Crypton Decays

    Get PDF
    We calculate the spectra of ultra-high-energy cosmic rays (UHECRs) in an explicit top-down model based on the decays of metastable neutral `crypton' states in a flipped SU(5) string model. For each of the eight specific 10th-order superpotential operators that might dominate crypton decays, we calculate the spectra of both protons and photons, using a code incorporating supersymmetric evolution of the injected spectra. For all the decay operators, the total UHECR spectra are compatible with the available data. Also, the fractions of photons are compatible with all the published upper limits, but may be detectable in future experiments.Comment: 9 pages latex, 10 eps figure

    Calculation of High Energy Neutrino-Nucleon Cross Sections and Uncertainties Using the MSTW Parton Distribution Functions and Implications for Future Experiments

    Full text link
    We present a new calculation of the cross sections for charged current (CC) and neutral current (NC) νN\nu N and νˉN\bar{\nu} N interactions in the neutrino energy range 104<Eν<101210^{4}<E_{\nu}<10^{12} GeV using the most recent MSTW parton distribution functions (PDFs), MSTW 2008. We also present the associated uncertainties propagated from the PDFs, as well as parametrizations of the cross section central values, their uncertainty bounds, and the inelasticity distributions for ease of use in Monte Carlo simulations. For the latter we only provide parametrizations for energies above 10710^7 GeV. Finally, we assess the feasibility of future neutrino experiments to constrain the νN\nu N cross section in the ultra-high energy (UHE) regime using a technique that is independent of the flux spectrum of incident neutrinos. A significant deviation from the predicted Standard Model cross sections could be an indication of new physics, such as extra space-time dimensions, and we present expected constraints on such models as a function of the number of events observed in a future subterranean neutrino detector.Comment: 20 pages, 13 figures, 5 tables, published in Phys.Rev.D. This version fixes a typo in Equation 16 of the publication. Also since version v1, the following changes are in v2 and also in the published version: tables with cs values, parametrization of the y distribution at low-y improved, the discussions on likelihood and also earth absorption are expanded, added a needed minus sign in Eq. 17 of v

    Enhanced clustering tendency of Cu-impurities with a number of oxygen vacancies in heavy carbon-loaded TiO2 - the bulk and surface morphologies

    Full text link
    The over threshold carbon-loadings (~50 at.%) of initial TiO2-hosts and posterior Cu-sensitization (~7 at.%) was made using pulsed ion-implantation technique in sequential mode with 1 hour vacuum-idle cycle between sequential stages of embedding. The final Cx-TiO2:Cu samples were qualified using XPS wide-scan elemental analysis, core-levels and valence band mappings. The results obtained were discussed on the theoretic background employing DFT-calculations. The combined XPS and DFT analysis allows to establish and prove the final formula of the synthesized samples as Cx-TiO2:[Cu+][Cu2+] for the bulk and Cx-TiO2:[Cu+][Cu0] for thin-films. It was demonstrated the in the mode of heavy carbon-loadings the remaining majority of neutral C-C bonds (sp3-type) is dominating and only a lack of embedded carbon is fabricating the O-C=O clusters. No valence base-band width altering was established after sequential carbon-copper modification of the atomic structure of initial TiO2-hosts except the dominating majority of Cu 3s states after Cu-sensitization. The crucial role of neutral carbon low-dimensional impurities as the precursors for the new phases growth was shown for Cu-sensitized Cx-TiO2 intermediate-state hosts.Comment: 27 pages, 7 figures, accepted to Solid State Science

    Cosmological Origin for Cosmic Rays Above 101910^{19} eV

    Get PDF
    The cosmic ray spectrum at 1019eV1020eV10^{19}{\rm eV}-10^{20}{\rm eV}, reported by the Fly's Eye and the AGASA experiments, is shown to be consistent with a cosmological distribution of sources of protons, with a power law generation spectrum dlnN/dlnE=2.3±0.5{\rm d}\ln N/{\rm d}\ln E=-2.3\pm0.5 and energy production rate of 4.5±1.5×1044erg Mpc3 yr14.5\pm1.5\times10^{44}{\rm erg}\ {\rm Mpc}^{-3}\ {\rm yr}^{-1}. The two events measured above 1020eV10^{20}{\rm eV} are not inconsistent with this model. Verifying the existence of a ``black-body cutoff'', currently observed with low significance, would require 30\sim30 observation-years with existing experiments, but only 1\sim1 year with the proposed 5000 km2\sim5000\ {\rm km}^2 detectors. For a cosmological source distribution, no anisotropy is expected in the angular distribution of events with energies up to 5×1019eV\sim5\times10^{19}{\rm eV}.Comment: uuencoded gz-compressed postscript file, including 2 figures; To appear in the October 10 (1995) issue of the Ap. J. Letter

    Diagnostic Potential of Cosmic-Neutrino Absorption Spectroscopy

    Get PDF
    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z0Z^{0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (102110^{21} -- 102510^{25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time-evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the lineshape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.Comment: 25 pages, 26 figures (in 46 files), uses RevTe
    corecore