284 research outputs found

    Coisotropic Branes, Noncommutativity, and the Mirror Correspondence

    Full text link
    We study coisotropic A-branes in the sigma model on a four-torus by explicitly constructing examples. We find that morphisms between coisotropic branes can be equated with a fundamental representation of the noncommutatively deformed algebra of functions on the intersection. The noncommutativity parameter is expressed in terms of the bundles on the branes. We conjecture these findings hold in general. To check mirror symmetry, we verify that the dimensions of morphism spaces are equal to the corresponding dimensions of morphisms between mirror objects.Comment: 13 page

    Monopole and Dyon Bound States in N=2 Supersymmetric Yang-Mills Theories

    Get PDF
    We study the existence of monopole bound states saturating the BPS bound in N=2 supersymmetric Yang-Mills theories. We describe how the existence of such bound states relates to the topology of index bundles over the moduli space of BPS solutions. Using an L2L^2 index theorem, we prove the existence of certain BPS states predicted by Seiberg and Witten based on their study of the vacuum structure of N=2 Yang-Mills theories.Comment: 34 pages, harvma

    A categorification of Morelli's theorem

    Full text link
    We prove a theorem relating torus-equivariant coherent sheaves on toric varieties to polyhedrally-constructible sheaves on a vector space. At the level of K-theory, the theorem recovers Morelli's description of the K-theory of a smooth projective toric variety. Specifically, let XX be a proper toric variety of dimension nn and let M_\bR = \mathrm{Lie}(T_\bR^\vee)\cong \bR^n be the Lie algebra of the compact dual (real) torus T_\bR^\vee\cong U(1)^n. Then there is a corresponding conical Lagrangian \Lambda \subset T^*M_\bR and an equivalence of triangulated dg categories \Perf_T(X) \cong \Sh_{cc}(M_\bR;\Lambda), where \Perf_T(X) is the triangulated dg category of perfect complexes of torus-equivariant coherent sheaves on XX and \Sh_{cc}(M_\bR;\Lambda) is the triangulated dg category of complex of sheaves on M_\bR with compactly supported, constructible cohomology whose singular support lies in Λ\Lambda. This equivalence is monoidal---it intertwines the tensor product of coherent sheaves on XX with the convolution product of constructible sheaves on M_\bR.Comment: 20 pages. This is a strengthened version of the first half of arXiv:0811.1228v3, with new results; the second half becomes arXiv:0811.1228v

    On Duality Walls in String Theory

    Get PDF
    Following the RG flow of an N=1 quiver gauge theory and applying Seiberg duality whenever necessary defines a duality cascade, that in simple cases has been understood holographically. It has been argued that in certain cases, the dualities will pile up at a certain energy scale called the duality wall, accompanied by a dramatic rise in the number of degrees of freedom. In string theory, this phenomenon is expected to occur for branes at a generic threefold singularity, for which the associated quiver has Lorentzian signature. We here study sequences of Seiberg dualities on branes at the C_3/Z_3 orbifold singularity. We use the naive beta functions to define an (unphysical) scale along the cascade. We determine, as a function of initial conditions, the scale of the wall as well as the critical exponent governing the approach to it. The position of the wall is piecewise linear, while the exponent appears to be constant. We comment on the possible implications of these results for physical walls.Comment: 22 pages, 2 figures. v2: physical interpretation rectified, reference adde

    Minimal Family Unification

    Full text link
    Absract It is proposed that there exist, within a new SU(2)â€ČSU(2)^{'}, a gauged discrete group Q6Q_6 (the order 12 double dihedral group) acting as a family symmetry. This nonabelian finite group can explain hierarchical features of families, using an assignment for quarks and leptons dictated by the requirements of anomaly cancellation and of no additional quarks.Comment: 10 pages, IFP-701-UNC;VAND-TH-94-

    Quantum symmetries and exceptional collections

    Full text link
    We study the interplay between discrete quantum symmetries at certain points in the moduli space of Calabi-Yau compactifications, and the associated identities that the geometric realization of D-brane monodromies must satisfy. We show that in a wide class of examples, both local and compact, the monodromy identities in question always follow from a single mathematical statement. One of the simplest examples is the Z_5 symmetry at the Gepner point of the quintic, and the associated D-brane monodromy identity

    Seiberg Duality is an Exceptional Mutation

    Full text link
    The low energy gauge theory living on D-branes probing a del Pezzo singularity of a non-compact Calabi-Yau manifold is not unique. In fact there is a large equivalence class of such gauge theories related by Seiberg duality. As a step toward characterizing this class, we show that Seiberg duality can be defined consistently as an admissible mutation of a strongly exceptional collection of coherent sheaves.Comment: 32 pages, 4 figures; v2 refs added, "orbifold point" discussion refined; v3 version to appear in JHEP, discussion of torsion sheaves improve

    Quantum-mechanical model for particles carrying electric charge and magnetic flux in two dimensions

    Get PDF
    We propose a simple quantum mechanical equation for nn particles in two dimensions, each particle carrying electric charge and magnetic flux. Such particles appear in (2+1)-dimensional Chern-Simons field theories as charged vortex soliton solutions, where the ratio of charge to flux is a constant independent of the specific solution. As an approximation, the charge-flux interaction is described here by the Aharonov-Bohm potential, and the charge-charge interaction by the Coulomb one. The equation for two particles, one with charge and flux (q,Ί/Zq, \Phi/Z) and the other with (−Zq,−Ω-Zq, -\Phi) where ZZ is a pure number is studied in detail. The bound state problem is solved exactly for arbitrary qq and Ί\Phi when Z>0Z>0. The scattering problem is exactly solved in parabolic coordinates in special cases when qΊ/2πℏcq\Phi/2\pi\hbar c takes integers or half integers. In both cases the cross sections obtained are rather different from that for pure Coulomb scattering.Comment: 12 pages, REVTeX, no figur

    NC Calabi-Yau Orbifolds in Toric Varieties with Discrete Torsion

    Get PDF
    Using the algebraic geometric approach of Berenstein et {\it al} (hep-th/005087 and hep-th/009209) and methods of toric geometry, we study non commutative (NC) orbifolds of Calabi-Yau hypersurfaces in toric varieties with discrete torsion. We first develop a new way of getting complex dd mirror Calabi-Yau hypersurfaces HΔ∗dH_{\Delta}^{\ast d} in toric manifolds MΔ∗(d+1)M_{\Delta }^{\ast (d+1)} with a C∗rC^{\ast r} action and analyze the general group of the discrete isometries of HΔ∗dH_{\Delta}^{\ast d}. Then we build a general class of dd complex dimension NC mirror Calabi-Yau orbifolds where the non commutativity parameters ΞΌΜ\theta_{\mu \nu} are solved in terms of discrete torsion and toric geometry data of MΔ(d+1)M_{\Delta}^{(d+1)} in which the original Calabi-Yau hypersurfaces is embedded. Next we work out a generalization of the NC algebra for generic dd dimensions NC Calabi-Yau manifolds and give various representations depending on different choices of the Calabi-Yau toric geometry data. We also study fractional D-branes at orbifold points. We refine and extend the result for NC T2)/(Z2×Z2)% (T^{2}\times T^{2}\times T^{2})/(\mathbf{{Z_{2}}\times {Z_{2})}} to higher dimensional torii orbifolds in terms of Clifford algebra.Comment: 38 pages, Late
    • 

    corecore