128 research outputs found

    Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens

    Get PDF
    © 2015 Brabec et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Genome-wide transcriptome profiling and spatial expression analyses identify signals and switches of development in tapeworms.

    Get PDF
    BACKGROUND: Tapeworms are agents of neglected tropical diseases responsible for significant health problems and economic loss. They also exhibit adaptations to a parasitic lifestyle that confound comparisons of their development with other animals. Identifying the genetic factors regulating their complex ontogeny is essential to understanding unique aspects of their biology and for advancing novel therapeutics. Here we use RNA sequencing to identify up-regulated signalling components, transcription factors and post-transcriptional/translational regulators (genes of interest, GOI) in the transcriptomes of Larvae and different regions of segmented worms in the tapeworm Hymenolepis microstoma and combine this with spatial gene expression analyses of a selection of genes. RESULTS: RNA-seq reads collectively mapped to 90% of the > 12,000 gene models in the H. microstoma v.2 genome assembly, demonstrating that the transcriptome profiles captured a high percentage of predicted genes. Contrasts made between the transcriptomes of Larvae and whole, adult worms, and between the Scolex-Neck, mature strobila and gravid strobila, resulted in 4.5-30% of the genes determined to be differentially expressed. Among these, we identified 190 unique GOI up-regulated in one or more contrasts, including a large range of zinc finger, homeobox and other transcription factors, components of Wnt, Notch, Hedgehog and TGF-β/BMP signalling, and post-transcriptional regulators (e.g. Boule, Pumilio). Heatmap clusterings based on overall expression and on select groups of genes representing 'signals' and 'switches' showed that expression in the Scolex-Neck region is more similar to that of Larvae than to the mature or gravid regions of the adult worm, which was further reflected in large overlap of up-regulated GOI. CONCLUSIONS: Spatial expression analyses in Larvae and adult worms corroborated inferences made from quantitative RNA-seq data and in most cases indicated consistency with canonical roles of the genes in other animals, including free-living flatworms. Recapitulation of developmental factors up-regulated during larval metamorphosis suggests that strobilar growth involves many of the same underlying gene regulatory networks despite the significant disparity in developmental outcomes. The majority of genes identified were investigated in tapeworms for the first time, setting the stage for advancing our understanding of developmental genetics in an important group of flatworm parasites

    Dicyemid Mesozoans: A Unique Parasitic Lifestyle and a Reduced Genome

    Get PDF
    Dicyemids, previously called "mesozoans" (intermediates between unicellular protozoans and multicellular metazoans), are an enigmatic animal group. They have a highly simplified adult body, comprising only approximately 30 cells, and they have a unique parasitic lifestyle. Recently, dicyemids were shown to be spiralians, with affinities to the Platyhelminthes. In order to understand molecular mechanisms involved in evolution of this odd animal, we sequenced the genome of Dicyema japonicum and a reference transcriptome assembly using mixed-stage samples. The D. japonicum genome features a high proportion of repetitive sequences that account for 49% of the genome. The dicyemid genome is reduced to approximately 67.5 Mb with 5,012 protein-coding genes. Only four Hox genes exist in the genome, with no clustering. Gene distribution in KEGG pathways shows that D. japonicum has fewer genes in most pathways. Instead of eliminating entire critical metabolic pathways, parasitic lineages likely simplify pathways by eliminating pathway-specific genes, while genes with fundamental functions may be retained in multiple pathways. In principle, parasites can stand to lose genes that are unnecessary, in order to conserve energy. However, whether retained genes in incomplete pathways serve intermediate functions and how parasites overcome the physiological needs served by lost genes, remain to be investigated in future studies

    Diversification of Schistosoma japonicum in Mainland China Revealed by Mitochondrial DNA

    Get PDF
    Despite the existing threat of schistosomiasis in some rural areas along the Yangtze River, the genetic diversity of Schistosoma japonicum has not been investigated across its wide geographical distribution in China, and such information may provide insight into the disease epidemiology and the development of its control measures. In this study, the adult parasites, obtained through infecting mice with cercariae from snails of the genus Oncomelania collected from a wide range of localities in currently endemic areas of schistosomiasis in the middle and lower (ML) reaches of the Yangtze River, and in Sichuan and Yunnan provinces in the upper reaches of the river in southwest (SW) China, were sequenced individually for mitochondrial genes. In general, a relatively high degree of genetic variation was observed in populations in the ML reaches in terms of nucleotide and haplotype diversity, but a low level was observed in populations in the SW. The significant difference in genetic diversity as revealed by F-statistics, and the existence of no shared haplotypes, were observed between populations in the ML reaches and those in the SW, indicating the effect of geographical separation/isolation upon the schistosomes and probably the parasite-snail system in China

    Divergence across mitochondrial genomes of sympatric members of the Schistosoma indicum group and clues into the evolution of Schistosoma spindale

    Get PDF
    Schistosoma spindale and Schistosoma indicum are ruminant-infecting trematodes of the Schistosoma indicum group that are widespread across Southeast Asia. Though neglected, these parasites can cause major pathology and mortality to livestock leading to significant welfare and socio-economic issues, predominantly amongst poor subsistence farmers and their families. Here we used mitogenomic analysis to determine the relationships between these two sympatric species of schistosome and to characterise S. spindale diversity in order to identify possible cryptic speciation. The mitochondrial genomes of S. spindale and S. indicum were assembled and genetic analyses revealed high levels of diversity within the S. indicum group. Evidence of functional changes in mitochondrial genes indicated adaptation to environmental change associated with speciation events in S. spindale around 2.5 million years ago. We discuss our results in terms of their theoretical and applied implications

    Ensembl Genomes 2022: an expanding genome resource for non-vertebrates

    Get PDF
    Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here we present our largest increase in plant, metazoan and fungal genomes since the project’s inception creating one of the world’s most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We also detail our new efforts in gene annotation, our emerging support for pangenome analysis and efforts to accelerate data dissemination through the Ensembl Rapid Release resource. We also present our new AlphaFold visualisation. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl’s release cycle

    An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes

    Get PDF
    Mitochondrial (mt) genomics represents an understudied but important field of molecular biology. Increasingly, mt dysfunction is being linked to a range of human diseases, including neurodegenerative disorders, diabetes and impairment of childhood development. In addition, mt genomes provide important markers for systematic, evolutionary and population genetic studies. Some technological limitations have prevented the expanded generation and utilization of mt genomic data for some groups of organisms. These obstacles most acutely impede, but are not limited to, studies requiring the determination of complete mt genomic data from minute amounts of material (e.g. biopsy samples or microscopic organisms). Furthermore, post-sequencing bioinformatic annotation and analyses of mt genomes are time consuming and inefficient. Herein, we describe a high-throughput sequencing and bioinformatic pipeline for mt genomics, which will have implications for the annotation and analysis of other organellar (e.g. plastid or apicoplast genomes) and virus genomes as well as long, contiguous regions in nuclear genomes. We utilize this pipeline to sequence and annotate the complete mt genomes of 12 species of parasitic nematode (order Strongylida) simultaneously, each from an individual organism. These mt genomic data provide a rich source of markers for studies of the systematics and population genetics of a group of socioeconomically important pathogens of humans and other animals.© The Author(s) 2009. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The attached file is the published pdf
    corecore