103 research outputs found

    A tale of three kingdoms: Members of the Phylum Nematoda independently acquired the detoxifying enzyme cyanase through horizontal gene transfer from plants and bacteria

    Get PDF
    Horizontal gene transfer (HGT) has played an important role in the evolution of nematodes. Among candidate genes, cyanase, which is typically found only in plants, bacteria and fungi, is present in more than 35 members of the Phylum Nematoda, but absent from free-living and clade V organisms. Phylogenetic analyses showed that the cyanases of clade I organisms Trichinella spp., Trichuris spp. and Soboliphyme baturini (Subclass: Dorylaimia) represent a well-supported monophyletic clade with plant cyanases. In contrast, all cyanases found within the Subclass Chromadoria which encompasses filarioids, ascaridoids and strongyloids are homologous to those of bacteria. Western blots exhibited typical multimeric forms of the native molecule in protein extracts of Trichinella spiralis muscle larvae, where immunohisto- chemical staining localized the protein to the worm hypodermis and underlying muscle. Recombinant Trichinella cyanase was bioactive where gene transcription profiles support functional activity in vivo. Results suggest that: (1) independent HGT in parasitic nematodes originated from different Kingdoms; (2) cyanase acquired an active role in the biology of extant Trichinella; (3) acquisition occurred more than 400 million years ago (MYA), prior to the divergence of the Trichinellida and Dioctophymatida, and (4) early, free-living ances- tors of the genus Trichinella had an association with terrestrial plants

    Wild ruminants as reservoirs of domestic livestock gastrointestinal T nematodes

    Get PDF
    Gastrointestinal nematode (GIN) infections in cattle cause appetite suppression which leads to poor feed conversion, reduced weight gain and reduced milk production. Overuse and exclusive reliance on anthelmintic drugs has resulted in widespread resistance in many parasitic nematode species infecting livestock making control increasingly difficult. Wild ruminants are competent hosts of a number of nematode species that typically infect and are best adapted for cattle, sheep, and goats. Thus, the potential exists for wild ruminants to act as reservoirs in the translocation of domestic GIN, including those carrying anthelmintic resistance mutations as well as susceptible genotypes. The potential for parasite exchange is heightened by interfaces or ecotones between managed and wild rangelands, and by perturbations linked to climate warming that can increasingly alter the distributions of wild ungulates and their interactions with domestic and free-ranging ruminants. To investigate the extent to which wild ruminants harbour parasites capable of infecting domestic ruminants we first performed an epidemiological study of feces from wildlife hosts that spanned 16 states and included white-tailed deer (85 % of the samples), pronghorn, elk, mule deer, bighorn sheep, moose, cattle, and caribou across the United States. All samples were cultured to third stage larvae and nematode DNA was isolated and PCR amplified. Among the 548 wild ruminant samples received, 33 % (181 samples) were positive for nematode DNA, among which half (84 samples) contained DNA from GIN species commonly found in cattle. DNA from cattle GIN species was detected in 46 % of samples from the Northeast, 42 % from the Southeast, 10 % from the Midwest, 0 % from the Southwest and 11 % from the West. Deep amplicon sequencing of the ITS-2 rDNA indicated that Ostertagia and Trichostrongylus were present in 90 % and 69 % of the nematode DNA positive samples, respectively, whereas Haemonchus, Cooperia and Oesophagostomum were present in 26 %, 2 % and 10 % of the samples, respectively. These data clearly show that wild ruminants commonly harbour multiple parasite species whose primary hosts are domestic cattle, and suggest that further work is warranted to investigate their specific roles in the management of anthelmintic resistance

    Trapping mechanism in overdamped ratchets with quenched noise

    Full text link
    A trapping mechanism is observed and proposed as the origin of the anomalous behavior recently discovered in transport properties of overdamped ratchets subject to external oscillatory drive in the presence of quenched noise. In particular, this mechanism is shown to appear whenever the quenched disorder strength is greater than a threshold value. The minimum disorder strength required for the existence of traps is determined by studying the trap structure in a disorder configuration space. An approximation to the trapping probability density function in a disordered region of finite length included in an otherwise perfect ratchet lattice is obtained. The mean velocity of the particles and the diffusion coefficient are found to have a non-monotonic dependence on the quenched noise strength due to the presence of the traps.Comment: 21 pages, 6 figures, to appear in PR

    Wild ruminants as reservoirs of domestic livestock gastrointestinal T nematodes

    Get PDF
    Gastrointestinal nematode (GIN) infections in cattle cause appetite suppression which leads to poor feed conversion, reduced weight gain and reduced milk production. Overuse and exclusive reliance on anthelmintic drugs has resulted in widespread resistance in many parasitic nematode species infecting livestock making control increasingly difficult. Wild ruminants are competent hosts of a number of nematode species that typically infect and are best adapted for cattle, sheep, and goats. Thus, the potential exists for wild ruminants to act as reservoirs in the translocation of domestic GIN, including those carrying anthelmintic resistance mutations as well as susceptible genotypes. The potential for parasite exchange is heightened by interfaces or ecotones between managed and wild rangelands, and by perturbations linked to climate warming that can increasingly alter the distributions of wild ungulates and their interactions with domestic and free-ranging ruminants. To investigate the extent to which wild ruminants harbour parasites capable of infecting domestic ruminants we first performed an epidemiological study of feces from wildlife hosts that spanned 16 states and included white-tailed deer (85 % of the samples), pronghorn, elk, mule deer, bighorn sheep, moose, cattle, and caribou across the United States. All samples were cultured to third stage larvae and nematode DNA was isolated and PCR amplified. Among the 548 wild ruminant samples received, 33 % (181 samples) were positive for nematode DNA, among which half (84 samples) contained DNA from GIN species commonly found in cattle. DNA from cattle GIN species was detected in 46 % of samples from the Northeast, 42 % from the Southeast, 10 % from the Midwest, 0 % from the Southwest and 11 % from the West. Deep amplicon sequencing of the ITS-2 rDNA indicated that Ostertagia and Trichostrongylus were present in 90 % and 69 % of the nematode DNA positive samples, respectively, whereas Haemonchus, Cooperia and Oesophagostomum were present in 26 %, 2 % and 10 % of the samples, respectively. These data clearly show that wild ruminants commonly harbour multiple parasite species whose primary hosts are domestic cattle, and suggest that further work is warranted to investigate their specific roles in the management of anthelmintic resistance

    Trichinella britovi etiological agent of sylvatic trichinellosis in the Republic of Guinea (West Africa) and a re-evaluation of geographical distribution for encapsulated species in Africa

    Get PDF
    In West Africa, Trichinella infection was documented in humans and animals from Senegal in the 1960s, and the biological characters of one isolate showed a lower infectivity to domestic pigs and rodents when compared with that of a Trichinella spiralis pig isolate from Europe. To identify the Trichinella species present in West Africa, a survey was conducted in a total of 160 wild animals in the Republic of Guinea. Three Viverridae, one true civet (Viverra civetta) and two African palm civets (Nandinia binotata) from the Fouta Djallon Massif, Pilimini Subprefecture, were found positive by artificial digestion of muscle samples. Trichinella larvae from these three viverrids were identified as Trichinella britovi and no difference was detected in three examined sequences from these African isolates and the reference strain of T. britovi from Europe, indicating common ancestry, an historically continuous geographic distribution, and recent isolation for African and European populations. The detection of T. britovi in West Africa modifies our knowledge about the distribution of encapsulated species of Trichinella in Africa. Thus, Trichinella nelsoni is now considered to have a distribution limited to the Eastern part of the Afrotropical region from Kenya to South Africa. This provides a plausible explanation for the presence of Trichinella T8 in Namibia and South Africa, and further suggests that T. britovi could be the Trichinella species circulating among wild animals of Northern Africa

    Isolation and characterization of new genetic types of Toxoplasma gondii and prevalence of Trichinella murrelli from black bear (Ursus americanus)

    Get PDF
    Black bears (Ursus americanus) are hosts for two important zoonotic parasites, Toxoplasma gondii and Trichinella spp. and bears are hunted for human consumption in the USA. Little is known of the genetic diversity of T. gondii circulating in wildlife. In the present study, antibodies to T. gondii were found in juice from tongues of 17 (25.7%) of 66 wild black bear from Maryland during the hunting season of 2010 and 2011. Antibodies to T. gondii were assessed by the modified agglutination test. Tongues of 17 seropositive bears were bioassayed in mice and viable T. gondii was isolated from three samples. These three T. gondii isolates (TgBbMd1-3) were further propagated in cell culture and DNA isolated from culture-derived tachyzoites was characterized using 11 PCR-RFLP markers (SAG1, 5′ - and 3′ -SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico). Results revealed three genotypes. TgBbMd1 is a Type 12 strain (ToxoDB PCR-RFLP genotype #4) and TgBbMd2 is ToxoDB PCR- RFLP genotype #216, and TgBbMd3 is a Type II clonal strain (ToxoDB PCR-RFLP genotype #1). The isolate TgBbMd2 was highly virulent for outbred Swiss Webster mice; all infected mice died of acute toxoplasmosis. Results indicate that mouse virulent strains of T. gondii are circulating in wildlife in the USA. These 66 tongues in addition to tongues collected during hunts in previous years were further investigated for the presence of muscle larvae of Trichinella spp. Tongues from 40 bears in 2005, 41 in 2006, 51 in 2007, 56 in 2008, 68 in 2009, 67 in 2010, and 66 in 2011 were subjected to digestion with pepsin/HCl and microscopic examination. Two bears were infected with Trichinella spp.; one in 2008 and one in 2009. Genotyping of collected muscle larvae revealed that the infecting species in both cases was Trichinella murrelli

    TEX (TEst stand for X-band) at LNF

    Full text link
    TEX facility if commissioned for high power testing to characterize accelerating structures and validate them for the operation on future particle accelerators for medical, industrial and research applications. At this aim, TEX is directly involved in the LNF leading project EuPRAXIA@SPARC_Lab. The brief description of the facility and its status and prospective will be provided.Comment: Talk presented at the International Workshop on Future Linear Colliders (LCWS 2023), 15-19 May 2023. C23-05-15.

    Gene Expression Profiling via Multigene Concatemers

    Get PDF
    We established a novel method, Gene Expression Profiling via Multigene Concatemers (MgC-GEP), to study multigene expression patterns simultaneously. This method consists of the following steps: (1) cDNA was obtained using specific reverse primers containing an adaptor. (2) During the initial 1–3 cycles of polymerase chain reaction (PCR), the products containing universal adaptors with digestion sites at both termini were amplified using specific forward and reverse primers containing the adaptors. (3) In the subsequent 4–28 cycles, the universal adaptors were used as primers to yield products. (4) The products were digested and ligated to produce concatemers. (5) The concatemers were cloned into the vector and sequenced. Then, the occurrence of each gene tag was determined. To validate MgC-GEP, we analyzed 20 genes in Saccharomyces cerevisiae induced by weak acid using MgC-GEP combined with real-time reverse transcription (RT)-PCR. Compared with the results of real-time RT-PCR and the previous reports of microarray analysis, MgC-GEP can precisely determine the transcript levels of multigenes simultaneously. Importantly, MgC-GEP is a cost effective strategy that can be widely used in most laboratories without specific equipment. MgC-GEP is a potentially powerful tool for multigene expression profiling, particularly for moderate-throughput analysis

    Comparative genomics of the major parasitic worms

    Get PDF
    Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms
    • …
    corecore