76 research outputs found

    The smarty4covid dataset and knowledge base: a framework enabling interpretable analysis of audio signals

    Full text link
    Harnessing the power of Artificial Intelligence (AI) and m-health towards detecting new bio-markers indicative of the onset and progress of respiratory abnormalities/conditions has greatly attracted the scientific and research interest especially during COVID-19 pandemic. The smarty4covid dataset contains audio signals of cough (4,676), regular breathing (4,665), deep breathing (4,695) and voice (4,291) as recorded by means of mobile devices following a crowd-sourcing approach. Other self reported information is also included (e.g. COVID-19 virus tests), thus providing a comprehensive dataset for the development of COVID-19 risk detection models. The smarty4covid dataset is released in the form of a web-ontology language (OWL) knowledge base enabling data consolidation from other relevant datasets, complex queries and reasoning. It has been utilized towards the development of models able to: (i) extract clinically informative respiratory indicators from regular breathing records, and (ii) identify cough, breath and voice segments in crowd-sourced audio recordings. A new framework utilizing the smarty4covid OWL knowledge base towards generating counterfactual explanations in opaque AI-based COVID-19 risk detection models is proposed and validated.Comment: Submitted for publication in Nature Scientific Dat

    Prediction-Coherent LSTM-based Recurrent Neural Network for Safer Glucose Predictions in Diabetic People

    Full text link
    In the context of time-series forecasting, we propose a LSTM-based recurrent neural network architecture and loss function that enhance the stability of the predictions. In particular, the loss function penalizes the model, not only on the prediction error (mean-squared error), but also on the predicted variation error. We apply this idea to the prediction of future glucose values in diabetes, which is a delicate task as unstable predictions can leave the patient in doubt and make him/her take the wrong action, threatening his/her life. The study is conducted on type 1 and type 2 diabetic people, with a focus on predictions made 30-minutes ahead of time. First, we confirm the superiority, in the context of glucose prediction, of the LSTM model by comparing it to other state-of-the-art models (Extreme Learning Machine, Gaussian Process regressor, Support Vector Regressor). Then, we show the importance of making stable predictions by smoothing the predictions made by the models, resulting in an overall improvement of the clinical acceptability of the models at the cost in a slight loss in prediction accuracy. Finally, we show that the proposed approach, outperforms all baseline results. More precisely, it trades a loss of 4.3\% in the prediction accuracy for an improvement of the clinical acceptability of 27.1\%. When compared to the moving average post-processing method, we show that the trade-off is more efficient with our approach

    What do healthcare professionals need to turn risk models for type 2 diabetes into usable computerized clinical decision support systems? Lessons learned from the MOSAIC project

    Full text link
    [EN] Background To understand user needs, system requirements and organizational conditions towards successful design and adoption of Clinical Decision Support Systems for Type 2 Diabetes (T2D) care built on top of computerized risk models. Methods The holistic and evidence-based CEHRES Roadmap, used to create eHealth solutions through participatory development approach, persuasive design techniques and business modelling, was adopted in the MOSAIC project to define the sequence of multidisciplinary methods organized in three phases, user needs, implementation and evaluation. The research was qualitative, the total number of participants was ninety, about five-seventeen involved in each round of experiment. Results Prediction models for the onset of T2D are built on clinical studies, while for T2D care are derived from healthcare registries. Accordingly, two set of DSSs were defined: the first, T2D Screening, introduces a novel routine; in the second case, T2D Care, DSSs can support managers at population level, and daily practitioners at individual level. In the user needs phase, T2D Screening and solution T2D Care at population level share similar priorities, as both deal with risk-stratification. End-users of T2D Screening and solution T2D Care at individual level prioritize easiness of use and satisfaction, while managers prefer the tools to be available every time and everywhere. In the implementation phase, three Use Cases were defined for T2D Screening, adapting the tool to different settings and granularity of information. Two Use Cases were defined around solutions T2D Care at population and T2D Care at individual, to be used in primary or secondary care. Suitable filtering options were equipped with "attractive" visual analytics to focus the attention of end-users on specific parameters and events. In the evaluation phase, good levels of user experience versus bad level of usability suggest that end-users of T2D Screening perceived the potential, but they are worried about complexity. Usability and user experience were above acceptable thresholds for T2D Care at population and T2D Care at individual. Conclusions By using a holistic approach, we have been able to understand user needs, behaviours and interactions and give new insights in the definition of effective Decision Support Systems to deal with the complexity of T2D care.The research leading to these results has received funding from the European Commission under the European Union's Seventh Framework Programme (FP7/2007-2013) grant agreement no 600914.Fico, G.; Hernandez, L.; Cancela, J.; Dagliati, A.; Sacchi, L.; Martinez-Millana, A.; Posada, J.... (2019). What do healthcare professionals need to turn risk models for type 2 diabetes into usable computerized clinical decision support systems? Lessons learned from the MOSAIC project. BMC Medical Informatics and Decision Making. 19(1):1-16. https://doi.org/10.1186/s12911-019-0887-8116191World Health Statistics 2018, Monitoring health for the SDGs, World Health Organization. Available at: https://www.who.int/gho/publications/world_health_statistics/en/ , last Accessed 09 Aug 2019.Kane R, Priester R, Totten A. Meeting the challenge of chronic illness. Baltimore: The Johns Hopkins University Press; 2005.Colagiuri, S., Kent, J., Kainu, T., Sutherland, S., Vuik, S. Rising to the challenge: preventing and managing type 2 diabetes, report of the WISH diabetes forum. 2015. Available from: http://www.wish.org.qa/wp-content/uploads/.../WISH_Diabetes_Forum_08.01.15_WEB-1.pdf . Accessed 09 Aug 2019.IDFD Atlas. 2017. Available from: http://www.diabetesatlas.org/resources/2017-atlas.html . Accessed 11 Feb 2018.American Diabetes Association Consensus Panel. Guidelines for computer modeling of diabetes and its complications. Diabetes Care. 2004;27(9):2262–5.Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 diabetes: systematic review. BMJ. 2011;343:d7163.Abbasi A, Peelen LM, Corpeleijn E, van der Schouw YT, Stolk RP, Spijkerman AM, et al. Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study. BMJ. 2012;345:e5900.Zarkogianni K, Litsa E, Mitsis K, Wu P, Kaddi CD, Cheng C, Wang MD, Nikita KS. A review of emerging technologies for the management of diabetes mellitus. IEEE Trans Biomed Eng. 2015;62(12):2735–49.Garg AX, Adhikari NK, McDonald H, Rosas-Arellano M, Devereaux PJ, Beyene J, Sam J, Haynes RB. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA. 2005;293(10):1223–38.Roshanov PS, et al. Computerized clinical decision support systems for chronic disease management: a decision-maker-researcher partnership systematic review. Implement Sc. 2011;6(1):92.Roshanov PS, et al. Features of effective computerised clinical decision support systems: meta-regression of 162 randomised trials. BMJ. 2013;346:f657.Miller A, Moon B, Anders S, Walden R, Brown S, Montella D. Integrating computerized clinical decision support systems into clinical work: a meta-synthesis of qualitative research. Int J Med Inform. 2015;84(12):1009–18.Patel VL, Kannampallil TG. Cognitive informatics in biomedicine and healthcare. J Biomed Inform. 2015;53:3–14.Zhang J. Human-centered computing in health information systems part 1: analysis and design. J Biomed Inform. 2005;38(1):1–3.Rinkus S, Walji M, Johnson-Throop KA, Malin M, Turley JP, Smith JW, Zhang J. Human-centered design of a distributed knowledge management system. J Biomed Inform. 2005;38:4–17.Nemeth CP, Nunnally M, O’Connor M, Klock PA, Cook R. Getting to the point: developing IT for the sharp end of healthcare. J Biomed Inform. 2005;38:18–25.Xiao Y. Artifacts and collaborative work in healthcare: methodological, theoretical and technological implications of the tangible. J Biomed Inform. 2005;38:26–33.Malhotra S, Laxmisan A, Keselman A, Zhang J, Patel VL. Designing the design phase of critical care devices: a cognitive approach. J Biomed Inform. 2005;38:34–50.Samaras GM, Horst RL. A systems engineering perspective on the human-centered design of health information systems. J Biomed Inform. 2005;38:61–74.Johnson CM, Johnson TR, Zhang J. A user-centered framework for redesigning health care interfaces. J Biomed Inform. 2005;38:75–87.Patterson ES, Boebbeling BN, Fung CH, Militello L, Anders S, Asch SM. Identifying barriers to the effective use of clinical reminders: bootstrapping multiple methods. J Biomed Inform. 2005;38:189–99.Laxmisan A, Malhotra S, Keselman A, Johnson TR, Patel VL. Decisions about critical events in device-related scenarios as a function of expertise. J Biomed Inform. 2005;38:200–12.Ginsburg GE. Human factors engineering: a tool for medical device evaluation in hospital procurement decision-making. J Biomed Inform. 2005;38:213–9.Reddy M, McDonald DW, Pratt W, Shabot MM. Technology, work, and information flows: lessons from the implementation of a wireless alert pager system. J Biomed Inform. 2005;38:229–38.Despont-Gros C, Mueller H, Lovis C. Evaluating user interactions with clinical information systems: a model based on human–computer interaction models. J Biomed Inform. 2005;38:244–55.World Health Organization, 2009. Practical guidance for scaling up health service innovations.European Commission, 2015. European scaling up strategy on active and healthy ageing.van Gemert-Pijnen JE, Nijland N, van Limburg M, Ossebaard HC, Kelders SM, Eysenbach G, Seydel ER. A holistic framework to improve the uptake and impact of eHealth technologies. J Med Internet Res. 2011;13(4):e111.Sacchi L, Dagliati A, Segagni D, Leporati P, Chiovato L, Bellazzi R. Improving risk-stratification of diabetes complications using temporal data mining. In: 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). United States: IEEE; 2015. p. 2131–4.Sambo F, Di Camillo B, Franzin A, Facchinetti A, Hakaste L, Kravic J, Fico G, et al. A Bayesian Network analysis of the probabilistic relations between risk factors in the predisposition to type 2 diabetes. In: 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). United States: IEEE; 2015. p. 2119–22.Van Velsen L, van Gemert-Pijnen L, Nijland N, Beaujean D, Van Steenbergen J. Personas: the linking pin in holistic design for eHealth. proc. eTELEMED; 2012.Van Velsen L, Wentzel J, Van Gemert-Pijnen JE. Designing eHealth that matters via a multidisciplinary requirements development approach. JMIR Res Protoc. 2013;2(1):e21.Maurya A. Running lean: iterate from plan A to a plan that works. United States: O’Reilly Media, Inc.; 2012.Wentzel J, Van Limburg M, Karreman J, Hendrix R, Van Gemert-Pijnen L. Co-creation with stakeholders: a Web 2.0 Antibiotic Stewardship Program. Proceedings of The Fourth International Conference on eHealth, Telemedicine, and Social Medicine: January 30, 2012 to February 4, 2012; Valencia. 2012:196–202.Morgan DL. Focus groups as qualitative research. Thousand Oaks: Sage; 1997.Saaty T. How to structure and make choices in complex problems. Hum Syst Manag. 1982;3:255–61.Saaty TL. A scaling method for priorities in hierarchical structures. J Math Psychol. 1977;15:234–81.Pecchia L, Bath PA, Pendleton N, Bracale M: Web-based system for assessing risk factors for falls in community-dwelling elderly people using the analytic hierarchy process. International Journal of the Analytic Hierarchy Process. 2010;2(2):135–57.Fico G, Gaeta E, Arredondo MT, Pecchia L. Analytic hierarchy process to define the most important factors and related technologies for empowering elderly people in taking an active role in their health. J Med Syst. 2015;39(9):1–7.Goepel KD. Implementation of an online software tool for the Analytic Hierarchy Process (AHP-OS). Int J Anal Hierarchy Process. 2018;10(3):469–87. https://doi.org/10.13033/ijahp.v10i3.590 .Nielsen J. Ten usability heuristics. United States: Nielsen Norman Group; 2005.Brooke J. SUS-A quick and dirty usability scale. Usability Eval Ind. 1996;189(194):4–7.Hassenzahl M, Burmester M, Koller F. AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: Mensch & computer. Germany: Vieweg+ Teubner Verlag; 2003, 2003. p. 187–96.International Organization for Standardization. Ergonomics of human-system interaction: part 210: human-centred design for interactive systems. United States: ISO; 2010.Sauro J, Lewis JR. Quantifying the user experience: practical statistics for user research. Burlington: Morgan Kaufmann; 2012.Gülcü C. The complete log4j manual. QOS. ch; 2003.Nantz B. Open source. NET development: programming with NAnt, NUnit, NDoc, and More. United States: Addison-Wesley Professional; 2004.Borsci S, Federici S, Lauriola M. On the dimensionality of the system usability scale: a test of alternative measurement models. Cogn Process. 2009;10(3):193–7.Borsci S, Federici S, Bacci S, Gnaldi M, Bartolucci F. Assessing user satisfaction in the era of user experience: comparison of the SUS, UMUX, and UMUX-LITE as a function of product experience. Int J Hum Comput Interact. 2015;31(8):484–95.Nielsen J, Landauer TK. A mathematical model of the finding of usability problems. In Proceedings of the INTERACT'93 and CHI'93 conference on Human factors in computing systems. 1993. pp. 206–13. ACM.Dagliati A, Sacchi L, Tibollo V, Cogni G, Teliti M, Martinez-Millana A, et al. A dashboard-based system for supporting diabetes care. J Am Med Inform Assoc. 2018;25(5):538–47.Fico G, et al. User requirements for incorporating diabetes modeling techniques in disease management tools. In: 6th European conference of the international federation for medical and biological engineering. Switzerland: Springer International Publishing; 2015.Cancela J, Hernandez L, Fico G, Waldmeyer MTA. Heuristic evaluation of a toolset for type 2 diabetes mellitus management. In: XIV Mediterranean conference on medical and biological engineering and computing. Switzerland: Springer International Publishing; 2016, 2016. p. 982–7.Borsci S, Uchegbu I, Buckle P, Ni Z, Walne S, Hanna GB. Designing medical technology for resilience: integrating health economics and human factors approaches. Expert Rev Med Devices. 2018;15(1):15–26

    Feedback through error correction in written speech: beliefs and practices of greek language teachers in lower secondary schools

    No full text
    The aim of the present thesis is to investigate teacher beliefs and feedback practices regarding written error correction in secondary education in Greece. In order to study this issue in depth, the mode of inquiry followed involved a quantitative and a qualitative research study. The first one examines the extent of implementation of particular feedback practices among 230 language teachers in classes of 12-15 year old adolescents as well as the gravity they attribute to particular errors in written speech. Specifically, the data collection instrument consisted of an original questionnaire, which aimed to elicit teacher preferences for direct and indirect corrective feedback types on errors in student writing. In the qualitative research, follow-up interviews were conducted with ten teachers who participated in the preceding quantitative research, in order to shed light on how their beliefs influence the way they correct written errors and shape their feedback practices.The findings from the quantitative data analysis indicated that teachers use a limited range of error feedback strategies, focusing mainly on direct corrective feedback. In addition, discrepancies emerged between their beliefs regarding the effectiveness of practices and the frequency of their implementation. It is worth mentioning that no statistically significant correlations were found between feedback practices and the gender, age, teaching experience, or further studies of the language teachers who participated in the research. The analysis of interview qualitative data revealed that: (a). the feedback practices reported by the participants’ were influenced by their personal beliefs on them, which were appeared to come along with beliefs about the institutional and socio-cultural context of school, (b). the need for teachers to become more aware of their own beliefs and practices about corrective feedback to student writing.O σκοπός της παρούσης διδακτορικής διατριβής είναι η διερεύνηση των πεποιθήσεων και πρακτικών ανατροφοδότησης των διδασκόντων σχετικά με τη διόρθωση των λαθών του γραπτού λόγου στη δευτεροβάθμια εκπαίδευση στην Ελλάδα. Προκειμένου να μελετηθεί σε βάθος η συγκεκριμένη θεματική περιοχή πραγματοποιήθηκαν μία ποσοτική και μία ποιοτική έρευνα. Η πρώτη εξετάζει τον βαθμό εφαρμογής συγκεκριμένων πρακτικών ανατροφοδότησης σε 230 έλληνες φιλολόγους του Γυμνασίου, καθώς και τη βαρύτητα, την οποία οι ίδιοι αποδίδουν σε επιμέρους λάθη του γραπτού λόγου. Ειδικότερα, ως εργαλείο μέτρησης αξιοποιήθηκε πρωτότυπο ερωτηματολόγιο, προκειμένου να εξαχθούν οι προτιμήσεις των διδασκόντων στους τύπους της άμεσης και της έμμεσης διορθωτικής ανατροφοδότησης στα λάθη του γραπτού λόγου των μαθητών. Η ποιοτική έρευνα περιελάμβανε συνεντεύξεις με δέκα από τους διδάσκοντες που συμμετείχαν στην ποσοτική έρευνα, ώστε να διερευνηθούν βαθύτερα οι πεποιθήσεις των διδασκόντων, οι οποίες επηρεάζουν τον τρόπο διόρθωσης των λαθών του γραπτού λόγου και διαμορφώνουν τις πρακτικές ανατροφοδότησης που υιοθετούν. Από τα ευρήματα της ανάλυσης των ποσοτικών δεδομένων διαπιστώθηκε ότι οι φιλόλογοι αξιοποιούν ένα περιορισμένο φάσμα στρατηγικών διόρθωσης των λαθών δίνοντας έμφαση κυρίως στην άμεση διορθωτική ανατροφοδότηση. Παράλληλα, προέκυψαν αποκλίσεις ανάμεσα στις πεποιθήσεις τους για την αποτελεσματικότητα των πρακτικών και στη συχνότητα με τις οποίες τις εφαρμόζουν. Αξιοσημείωτο είναι το γεγονός ότι δεν εντοπίστηκαν στατιστικά σημαντικές συσχετίσεις ανάμεσα στις πρακτικές ανατροφοδότησης και το φύλο, την ηλικία, τη διδακτική εμπειρία και τις επιπλέον σπουδές των φιλολόγων που συμμετείχαν στην έρευνα. H ανάλυση των ποιοτικών δεδομένων των συνεντεύξεων ανέδειξε α. την επίδραση προσωπικών πεποιθήσεων των συμμετεχόντων στις πρακτικές ανατροφοδότησης, οι οποίες διαμορφώνονται σε μεγάλο βαθμό και από τις πεποιθήσεις τους για το θεσμικό και κοινωνικο-πολιτισμικό πλαίσιο του σχολείου και β. την ανάγκη να αποκτήσουν οι διδάσκοντες μεγαλύτερη επίγνωση των δικών τους πεποιθήσεων και πρακτικών σχετικά με τη διορθωτική ανατροφοδότηση στον γραπτό λόγο των μαθητών

    Synthesis and characterization of new anionic metal complex dyes with metal different to Cr and metal complex dyes with minimized metal content and their application to the dyeing of wool and polyamide fibers

    No full text
    Metal complex dyes are the predominant dye class for the dyeing of wool, nylon and silk due to their superior fastness properties to wash and light compared to the non-metallized acid dyes. Metallization generally leads to bathochromic shift and due to this metal complex dyes are duller and mainly are used to produce deep depths of shade offering fastness properties which are unattainable with common acid dyes and thus fulfilling high customer demands. The metal introduced in the molecule of an acid dye enhances the light fastness by offering protection of the azo chromophore against ultraviolet degradation. Usually metal complex azo dyes are predominantly complexes of Cr (III), Co (II, III), and Cu (II). However, the manufacturing and application processes involving the treatment of metallizable dyes with Co(II), Cr(III) and Cu(II) ions are of great environmental concern due to the fact that the metals used are considered to be priority pollutants. The past decade has been marked by a growing interest in the development and use of ecologically friendly dyes. This concept led to the consideration of other less toxic metals such as Fe and Al salts as metallizing agents and possible substitutes for metals such as Cr, Co, Cu and Ni. Disposal of dye house effluents is a major environmental consideration and presently is commonly being done by a combination of physicochemical and biological treatments which reduce the organic charge of the effluents drastically. Recently, due to the greater environmental demands, novel techniques have been developed for the minimization of heavy metal content in the industrial effluents. Ultra-filtration technology is one of newest technologies applied for the treatment of textile effluents aiming at the elimination of toxic pollutants in the discharged effluents. In this present work a simplified novel one pot method of synthesis of metal-complex anionic azo dyes (Cr-, Co-, Fe-, Cu-, Al-, Zn-, Ni-, Mn- complexes) and the subsequent minimization of the metal-content in the final dye by ultra-filtration was carried out. Two anionic azo dyes were used for the metallization that differs in one - ΝΟ₂ group. The commercially available corresponding Cr- complexed dye, Neutrilan Navy MBR (Acid Blue 193) was used as a reference for metal complex azo dyes I and the Neutrilan Black MR and Neutrilan Black MRX (Acid Black 194), were used as references for metal complex azo dyes II. The use of ultra-filtration allows the production of highly concentrated, purified, metal complex dyes with drastically reduced free metal and electrolyte content. The ultra-filtrated dyes have drastically improved solubility properties when compared to their non ultra-filtrated counterparts. The elimination of heavy metal and inorganic salts from the dye formulation allows the production of novel dyes of high concentration and purity with improved properties and more environmentally friendly compared to the ones conventionally made. All dyes (before and after ultrafiltration) were characterized by FT-IR, UV-Vis, NMR and their melting points. XRF analysis and atomic absorption measurements were performed for the determination of free and total metal-content for the synthesized metal complex dyes before and after ultra-filtration. All of the synthesized dyes (before and after ultra-filtration) were applied for the dyeing of wool and polyamide fibres and colour measurements and fastness properties tests (wash, light, rubbing) were carried out. Water based inks contain typically 30-80% water as a proportion of the total mass of the ink together with a water miscible organic solvent such as a monohydric alcohol and the colorant. The preparation of the inks was made using water and a mixture of 2-propanol/ethylene glycol as the water miscible solvent. Ethylene glycol was acting also as a wetting agent. The surface tension, pH, viscosity and conductivity of the above formulations were monitored over a period of 180 days. Monitoring a formulation over a period of time is a widely accepted method for evaluating dispersion stability. A printing test on a wool fiber was carried out using the Cr-complex(II) ink.Τα χρώματα σύμπλοκα με μέταλλα είναι τα πιο κατάλληλα χρώματα για τη βαφή μάλλινου, νάιλον και μεταξωτού υφάσματος λόγω των εξαιρετικών ιδιοτήτων αντοχής που παρουσιάζουν στο πλύσιμο και στο φως συγκρινόμενα με τα μη συμπλοκοποιημένα με μέταλλα όξινα χρώματα. Η συμπλοκοποίηση με μέταλλα οδηγεί συνήθως σε βαθυχρωμική μετατόπιση και γιαυτό τα χρώματα σύμπλοκα με μέταλλα συνήθως χρησιμοποιούνται για την επίτευξη σκούρων αποχρώσεων με ταυτόχρονα εξαιρετικές ιδιότητες αντοχών που ικανοποιούν τις υψηλές απαιτήσεις των καταναλωτών. Το ιόν του μετάλλου που εισέρχεται στο μόριο του όξινου χρώματος ενισχύει την αντοχή στο φως παρέχοντας προστασία της αζωομάδας απέναντι στην υπεριώδη ακτινοβολία. Συνήθη χρώματα σύμπλοκα με μέταλλα είναι με σύμπλοκα με Cr (III), Co (II, III) και Cu (II). Η παραγωγή και η εφαρμογή των χρωμάτων αυτών αποτελούν αντικείμενο περιβαλλοντικών ερευνών εφόσον θεωρούνται ρυπαντές του περιβάλλοντος. Η τελευταία δεκαετία έχει χαρακτηριστεί από το αμείωτο και συνεχές ενδιαφέρον για την ανάπτυξη και χρήση περιβαλλοντικά φιλικών χρωμάτων. Αυτό οδήγησε στη χρήση μετάλλων με μικρότερη τοξικότητα όπως ο Fe και το Al τα οποία μπορούν πιθανόν να αντικαταστήσουν τα Cr, Co, Cu και Ni. Η διάχυση των αποβλήτων με περιεχόμενο χρώματος αποτελεί μεγάλη απειλή για το περιβάλλον και γιαυτό γίνονται προσπάθειες μέσω φυσικοχημικών και βιολογικών διεργασιών για την ελάττωση του οργανικού περιεχομένου από τα απόβλητα. Επίσης γίνονται προσπάθειες για την ανάπτυξη καινοτόμων τεχνικών με σκοπό την ελαχιστοποίηση του περιεχομένου σε βαρέα μέταλλα από τα βιομηχανικά απόβλητα. Η υπερδιήθηση είναι μία από τις πιο σύγχρονες τεχνικές η οποία εφαρμόζεται στα απόβλητα της βιομηχανίας χρωμάτων και κλωστοϋφαντουργικών προϊόντων με σκοπό την ελαχιστοποίηση του τοξικού περιεχομένου των αποβλήτων. Στην παρούσα διατριβή πραγματοποιείται η σύνθεση αζωχρωμάτων συμπλόκων με μέταλλα (Cr-, Co-, Fe-, Cu-, Al-, Zn-, Ni-, Mn-) με μία απλοποιημένη μέθοδο σύνθεσης σε ένα στάδιο και στη συνέχεια ακολουθεί η ελαχιστοποίηση του περιεχομένου μετάλλου στο χρώμα με την εφαρμογή υπερδιήθησης. Πραγματοποιείται η συμπλοκοποίηση δύο ανιονικών αζωχρωμάτων με τα παραπάνω μέταλλα τα οποία διαφέρουν σε μία νιτροομάδα - ΝΟ₂. Για τη σύγκριση χρησιμοποιούνται σαν πρότυπα τα αντίστοιχα εμπορικά χρώματα σύμπλοκα με Cr, το Neutrilan Navy MBR (Acid Blue 193) στην ομάδα χρωμάτων I και τα Neutrilan Black MR και Neutrilan Black MRX (Acid Black 194), στην ομάδα χρωμάτων ΙI. Η εφαρμογή της υπερδιήθησης επιτρέπει την παραγωγή υπερσυμπυκνωμένων και υπερκαθαρών χρωμάτων με ελάχιστο περιεχόμενο ελεύθερου μετάλλου και ηλεκτρολυτών. Τα υπερδιηθημένα χρώματα έχουν εξαιρετική διαλυτότητα, είναι υπερσυμπυκνωμένα, υπερκαθαρά και επομένως περισσότερο φιλικά προς το περιβάλλον. Όλα τα χρώματα (πριν και μετά την υπερδιήθηση) χαρακτηρίστηκαν με φασματοσκοπία FT-IR, NMR, UV-Vis και με τα σημεία τήξεως αλλά και με φασματοσκοπία φθορισμού ακτίνων X (XRF) και τη φασματοσκοπία ατομικής απορρόφησης για τον προσδιορισμό τόσο του ολικού όσο και του ελεύθερου περιεχομένου μετάλλου πριν και μετά την υπερδιήθηση. Με όλα τα χρώματα που παρασκευάστηκαν αλλά και με τα εμπορικά (πριν και μετά την υπερδιήθηση) πραγματοποιήθηκε βαφή μάλλινου και πολυαμιδικού υφάσματος και στα βαμμένα δείγματα μετρήθηκαν οι ιδιότητες αντοχής στο φως, στο πλύσιμο και στην τριβή. Επίσης έγινε μέτρηση των χρωματομετρικών συντεταγμένων των δειγμάτων. Τα χρώματα που παρασκευάστηκαν τέλος χρησιμοποιήθηκαν για την Παρασκευή υδατογενών μελανών ψηφιακής εκτύπωσης υφασμάτων. Οι υδατογενείς μελάνες τυπικά περιέχουν 30-80% νερό και το υπόλοιπο αποτελείται από έναν οργανικό διαλύτη όπως μια μονοϋδρική αλκοόλη και από το χρώμα. Η προετοιμασία των μελανών έγινε με τη μίξη νερού και ενός μίγματος ισοπροπανόλης/αιθυλενογλυκόλης και του χρώματος. Στις μελάνες που παρασκευάστηκαν μετρήθηκαν η επιφανειακή τάση, το pH, το ιξώδες και η αγωγιμότητα για διάστημα 180 ημερών. Το διάστημα αυτό είναι αρκετό για τον έλεγχο της καταλληλότητας των μελανών. Τέλος πραγματοποιήθηκε μία δοκιμαστική εκτύπωση σε μάλλινο ύφασμα με τη μελάνη από Cr-σύμπλοκο (ΙΙ)
    corecore