28 research outputs found

    Restoring betatron phase coherence in a beam-loaded laser-wakefield accelerator

    Full text link
    Matched beam loading in laser wakefield acceleration (LWFA), characterizing the state of flattening of the acceleration electric field along the bunch, leads to the minimization of energy spread at high bunch charges. Here, we demonstrate by independently controlling injected charge and acceleration gradients, using the self-truncated ionization injection scheme, that minimal energy spread coincides with a reduction of the normalized beam divergence. With the simultaneous confirmation of a constant beam radius at the plasma exit, deduced from betatron radiation spectroscopy, we attribute this effect to the reduction of chromatic betatron decoherence. Thus, beam loaded LWFA enables highest longitudinal and transverse phase space densities

    Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator.

    Get PDF
    Laser-plasma wakefield accelerators have seen tremendous progress, now capable of producing quasi-monoenergetic electron beams in the GeV energy range with few-femtoseconds bunch duration. Scaling these accelerators to the nanocoulomb range would yield hundreds of kiloamperes peak current and stimulate the next generation of radiation sources covering high-field THz, high-brightness X-ray and γ-ray sources, compact free-electron lasers and laboratory-size beam-driven plasma accelerators. However, accelerators generating such currents operate in the beam loading regime where the accelerating field is strongly modified by the self-fields of the injected bunch, potentially deteriorating key beam parameters. Here we demonstrate that, if appropriately controlled, the beam loading effect can be employed to improve the accelerator's performance. Self-truncated ionization injection enables loading of unprecedented charges of ∼0.5 nC within a mono-energetic peak. As the energy balance is reached, we show that the accelerator operates at the theoretically predicted optimal loading condition and the final energy spread is minimized.Higher beam quality and stability are desired in laser-plasma accelerators for their applications in compact light sources. Here the authors demonstrate in laser plasma wakefield electron acceleration that the beam loading effect can be employed to improve beam quality by controlling the beam charge

    Utilization of Mid-Thigh Magnetic Resonance Imaging to Predict Lean Body Mass and Knee Extensor Strength in Obese Adults

    Get PDF
    PurposeTo train and test a machine learning model to automatically measure mid-thigh muscle cross-sectional area (CSA) to provide rapid estimation of appendicular lean mass (ALM) and predict knee extensor torque of obese adults.MethodsObese adults [body mass index (BMI) = 30–40 kg/m2, age = 30–50 years] were enrolled for this study. Participants received full-body dual-energy X-ray absorptiometry (DXA), mid-thigh MRI, and completed knee extensor and flexor torque assessments via isokinetic dynamometer. Manual segmentation of mid-thigh CSA was completed for all MRI scans. A convolutional neural network (CNN) was created based on the manual segmentation to develop automated quantification of mid-thigh CSA. Relationships were established between the automated CNN values to the manual CSA segmentation, ALM via DXA, knee extensor, and flexor torque.ResultsA total of 47 obese patients were enrolled in this study. Agreement between the CNN-automated measures and manual segmentation of mid-thigh CSA was high (>0.90). Automated measures of mid-thigh CSA were strongly related to the leg lean mass (r = 0.86, p < 0.001) and ALM (r = 0.87, p < 0.001). Additionally, mid-thigh CSA was strongly related to knee extensor strength (r = 0.76, p < 0.001) and moderately related to knee flexor strength (r = 0.48, p = 0.002).ConclusionCNN-measured mid-thigh CSA was accurate compared to the manual segmented values from the mid-thigh. These values were strongly predictive of clinical measures of ALM and knee extensor torque. Mid-thigh MRI may be utilized to accurately estimate clinical measures of lean mass and function in obese adults

    Single-shot betatron source size measurement from a laser-wakefield accelerator

    No full text
    Betatron radiation emitted by accelerated electrons in laser-wakefield accelerators can be used as a diagnostic tool to investigate electron dynamics during the acceleration process. We analyze the spectral characteristics of the emitted Betatron pattern utilizing a 2D x-ray imaging spectroscopy technique. Together with simultaneously recorded electron spectra and x-ray images, the betatron source size, thus the electron beam radius, can be deduced at every shot

    Tomographic characterisation of gas-jet targets for laser wakefield acceleration

    Get PDF
    Laser wakefield acceleration (LWFA) has emerged as a promising concept for the next generation of high energy electron accelerators. The acceleration medium is provided by a target that creates a local well-defined gas-density profile inside a vacuum vessel. Target development and analysis of the resulting gas-density profiles is an important aspect in the further development of LWFA. Gas-jet targets are widely used in regimes where relatively high electron densities over short interaction lengths are required (up to several millimetres interaction length, plasma densities down to View the MathML source~1018cm−3). In this paper we report a precise characterisation of such gas-jet targets by a laser interferometry technique. We show that phase shifts down to 4 mrad can be resolved. Tomographic phase reconstruction enables detection of non-axisymmetrical gas-density profiles which indicates defects in cylindrical nozzles, analysis of slit-nozzles and nozzles with an induced shock-wave density step. In a direct comparison between argon and helium jets we show that it cannot automatically be assumed, as is often done, that a nozzle measured with argon will provide the same gas density with heliu

    Calibration and cross-laboratory implementation of scintillating screens for electron bunch charge determination

    No full text
    We revise the calibration of scintillating screens commonly used to detect relativistic electron beamswith low average current, e.g., from laser-plasma accelerators, based on new and expanded measure-ments that include higher charge density and different types of screens than previous work [Bucket al.,Rev. Sci. Instrum.81, 033301 (2010)]. Electron peak charge densities up to 10 nC/mm2were pro-vided by focused picosecond-long electron beams delivered by the Electron Linac for beams withhigh Brilliance and low Emittance (ELBE) at the Helmholtz-Zentrum Dresden-Rossendorf. At lowcharge densities, a linear scintillation response was found, followed by the onset of saturation in therange of nC/mm2. The absolute calibration factor (photons/sr/pC) in this linear regime was measuredto be almost a factor of 2 lower than that reported by Bucket al.retrospectively implying a highercharge in the charge measurements performed with the former calibration. A good agreement wasfound with the results provided by Glinecet al.[Rev. Sci. Instrum.77, 103301 (2006)]. Furthermorelong-term irradiation tests with an integrated dose of approximately 50 nC/mm2indicate a significantdecrease of the scintillation efficiency over time. Finally, in order to enable the transfer of the absolutecalibration between laboratories, a new constant reference light source has been developed
    corecore