82 research outputs found

    Towards modelling physical and chemical effects during wettability alteration in carbonates at pore and continuum scales

    Get PDF
    Understanding what controls the enhanced oil recovery during waterflooding of carbonate rocks is essential as the majority of the world’s remaining hydrocarbon reserves are contained in carbonate rocks. To further this understanding, in this thesis we develop a pore-scale simulator that allows us to look at the fundamental physics of fluid flow and reactive solute transport within the porous media. The simulator is based on the combined finite element – finite volume method, it incorporates efficient discretization schemes and can hence be applied to porous domains with hundreds of pores. Our simulator includes the rule-based method of accounting for the presence of the second immiscibly trapped fluid phase. Provided that we know what chemical conditions initiate enhanced oil recovery, our simulator allows us to analyse whether these conditions occur, where they occur and how they are influenced by the flow of the aqueous phase at the pore scale. To establish the nature of chemical interactions between the injected brines and the carbonate rocks, we analyze the available experimental data on the single-phase coreflooding of carbonate rocks. We then build a continuum scale simulation that incorporates various chemical reactions, such as ions adsorption and mineral dissolution and precipitation. We match the output of the continuum scale model with the experimental data to identify what chemical interactions the ions dissolved in seawater are involved in

    ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· прогностичСской значимости Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΉ хромосомы 8 Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΡƒΠ²Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΠΎΠΉ

    Get PDF
    Introduction. Uveal melanoma ability to metastasize depends on a few prognostic factors. The genetic ones are considered to be the most significant. The role of disorders of the short arm of chromosome 8 (8p), as well as a combination of changes in 8p and the long arm of this chromosome (8q) in the development of metastatic lesions in this pathology remains insufficiently studied.The study objective – to evaluate the prognostic value of chromosome 8 abnormalities in patients with uveal melanoma.Materials and methods. We analyzed 2 retrospective groups of patients who underwent enucleation for uveal melanoma, statistically homogeneous in the main clinical parameters. Group 1 included patients without signs of metastases (n = 41) with an average follow-up period of 71 months, Group 2 included patients with detected metastases (n = 51) and an average follow-up period of 21 months Chromosome abnormalities were tested by multiplex ligation-dependent probe amplification.Results. Three- and five-year survival in patients with uveal melanoma without 8p deletion were 64 and 54 %, respectively; with 8p deletion significantly lower – 25 and 6 %, respectively. The same survival rates in patients with uveal melanoma with 8q amplification were 43 and 26 %, respectively, whereas in patients without 8q amplification they were significantly higher – 80 and 74 %, respectively. In patients with uveal melanoma harbouring both abnormalities, 3- and 5-year survival rates were 26 and 7 %, whereas isolated 8q amplification was associated with 47 and 35 % survival, respectively. These survival rates differ greatly and significantly: hazard ratio 3,26 (95 % confidence interval 1,86–5,69) and 6,89 (95 % confidence interval 2,67–17,73), respectively (Ρ€ <0,0001).Conclusion. The findings support comprehensive evaluation of chromosome 8 abnormalities as a substantial part of uveal melanoma prognostication. 8q amplification, 8p deletion, combination of these abnormalities and its role in uveal melanoma malignity should be further discovered. Further research in this direction is needed.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΡƒΠ²Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ ΠΊ ΠΌΠ΅Ρ‚Π°ΡΡ‚Π°Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ зависит ΠΎΡ‚ Ρ†Π΅Π»ΠΎΠ³ΠΎ спСктра прогностичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², срСди ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… гСнСтичСскиС ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΡΠ½ΠΎΠ²ΠΎΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‰Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. Роль Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ ΠΏΠ»Π΅Ρ‡Π° хромосомы 8 (8Ρ€), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ 8Ρ€ ΠΈ Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ»Π΅Ρ‡Π° этой хромосомы (8q) Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ мСтастатичСского пораТСния ΠΏΡ€ΠΈ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ остаСтся нСдостаточно ΠΈΠ·ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ.ЦСль исслСдования – ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ комплСксного Π°Π½Π°Π»ΠΈΠ·Π° прогностичСской значимости Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΉ хромосомы 8 Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΡƒΠ²Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΠΎΠΉ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π‘Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ 2 рСтроспСктивныС Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Π±Ρ‹Π»Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° энуклСация ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ ΡƒΠ²Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹, статистичСски ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹Π΅ ΠΏΠΎ основным клиничСским ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌ. Π’ 1-ю Π³Ρ€ΡƒΠΏΠΏΡƒ вошли Π±ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Π±Π΅Π· ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² мСтастазов (n = 41) со срСдним сроком наблюдСния 71 мСс, Π²ΠΎ 2-ю Π³Ρ€ΡƒΠΏΠΏΡƒ – Π±ΠΎΠ»ΡŒΠ½Ρ‹Π΅ с выявлСнными мСтастазами (n = 51) ΠΈ срСдним сроком наблюдСния 21 мСс. Π°Π½Π°Π»ΠΈΠ· хромосомных Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ проводился ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ Π°ΠΌΠΏΠ»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π»ΠΈΠ³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π·ΠΎΠ½Π΄ΠΎΠ².Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’Ρ€Π΅Ρ…- ΠΈ 5-лСтняя Π²Ρ‹ΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΡƒΠ²Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΠΎΠΉ Π±Π΅Π· Π΄Π΅Π»Π΅Ρ†ΠΈΠΈ 8p составила 64 ΠΈ 54 %, с Π΄Π΅Π»Π΅Ρ†ΠΈΠ΅ΠΉ 8p – 25 ΠΈ 6 % соотвСтствСнно. Π£ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с Π°ΠΌΠΏΠ»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ 8q эти ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Π±Ρ‹Π»ΠΈ Ρ€Π°Π²Π½Ρ‹ 43 ΠΈ 26 %, Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π· Π°ΠΌΠΏΠ»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ 8q – 80 ΠΈ 74 % соотвСтствСнно. Для ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π°ΠΌΠΏΠ»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ Ρ€Π΅Π³ΠΈΠΎΠ½Π° 8q ΠΈ Π΄Π΅Π»Π΅Ρ†ΠΈΠ΅ΠΉ Ρ€Π΅Π³ΠΈΠΎΠ½Π° 8Ρ€ 3- ΠΈ 5-лСтняя Π²Ρ‹ΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ составила 26 ΠΈ 7 %, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ для ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π°ΠΌΠΏΠ»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ 8q – 47 ΠΈ 35 % соотвСтствСнно. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ выТиваСмости ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π°ΠΌΠΏΠ»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ 8q ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠ΅ΠΉ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ (del8p + amp8q) различаСтся сущСствСнно ΠΈ достовСрно: ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ рисков 3,26 (95 % Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» 1,86–5,69) ΠΈ 6,89 (95 % Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» 2,67–17,73) (Ρ€ <0,0001).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠžΡ†Π΅Π½ΠΊΠ° Π°ΠΌΠΏΠ»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ 8q, Π΄Π΅Π»Π΅Ρ†ΠΈΠΈ 8p ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ этих Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ Π΄ΠΎΠ»ΠΆΠ½Π° ΡΡ‚Π°Ρ‚ΡŒ Π½Π΅ΠΎΡ‚ΡŠΠ΅ΠΌΠ»Π΅ΠΌΠΎΠΉ Ρ‡Π°ΡΡ‚ΡŒΡŽ прогнозирования риска мСтастазирования ΡƒΠ²Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹. НСобходимы дальнСйшиС исслСдования Π² этом Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ

    Insights into non-Fickian solute transport in carbonates

    Get PDF
    [1] We study and explain the origin of early breakthrough and long tailing plume behavior by simulating solute transport through 3‐D X‐ray images of six different carbonate rock samples, representing geological media with a high degree of pore‐scale complexity. A Stokes solver is employed to compute the flow field, and the particles are then transported along streamlines to represent advection, while the random walk method is used to model diffusion. We compute the propagators (concentration versus displacement) for a range of Peclet numbers (Pe ) and relate it to the velocity distribution obtained directly on the images. There is a very wide distribution of velocity that quantifies the impact of pore structure on transport. In samples with a relatively narrow spread of velocities, transport is characterized by a small immobile concentration peak, representing essentially stagnant portions of the pore space, and a dominant secondary peak of mobile solute moving at approximately the average flow speed. On the other hand, in carbonates with a wider velocity distribution, there is a significant immobile peak concentration and an elongated tail of moving fluid. An increase in Pe , decreasing the relative impact of diffusion, leads to the faster formation of secondary mobile peak(s). This behavior indicates highly anomalous transport. The implications for modeling field‐scale transport are discussed

    ΠŸΠ Π•Π”ΠŸΠžΠ‘Π«Π›ΠšΠ˜ Π‘ΠžΠ—Π”ΠΠΠ˜Π― ΠŸΠ•Π Π‘ΠŸΠ•ΠšΠ’Π˜Π’ΠΠžΠ“Πž АППАРАВА ΠΠ•Π˜ΠΠ’ΠΠ—Π˜Π’ΠΠžΠ™ Π›Π£Π§Π•Π’ΠžΠ™ ΠœΠ•Π”Π˜Π¦Π˜ΠΠ‘ΠšΠžΠ™ Π”Π˜ΠΠ“ΠΠžΠ‘Π’Π˜ΠšΠ˜ НА ΠžΠ‘ΠΠžΠ’Π• ΠœΠ˜ΠšΠ ΠžΠ’ΠžΠ›ΠΠžΠ’ΠžΠ“Πž Π˜Π—Π›Π£Π§Π•ΠΠ˜Π―

    Get PDF
    Background for development of perspective apparatus for non-invasive medkal radiation diagnostics of functional state of inner organs and tissues on the base of application of microwave sensing and visualization techniques in non-ionizing range of electromagnetic spectrum safe for human organism, practically implemented using smart antenna array, is given. Perspective medical apparatus will have previously unachievable functional technological characteristics, particularly - principal possibility of high-resolution visualization of organs and tissues without using any contrast agents and costing less in comparison with existing systems of computer, magnetic resonance and positron emission tomography on the market.Обоснована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ создания пСрспСктивного Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ комплСкса Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ мСдицинской Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ диагностики Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ состояния Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΈ Ρ‚ΠΊΠ°Π½Π΅ΠΉ Π½Π° основС примСнСния ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΌΠΈΠΊΡ€ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ зондирования ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π² Π½Π΅ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ области элСктромагнитного спСктра с бСзопасной Π΄ΠΎΠ·ΠΎΠΉ излучСния для ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ использования Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΠΉ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ Π°Π½Ρ‚Π΅Π½Π½ΠΎΠΉ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠΈ. ΠŸΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ диагностичСский комплСкс Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Ρ€Π°Π½Π΅Π΅ нСдостиТимыС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ тСхнологичСскиС свойства, Π² частности, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Ρ‹ΡΠΎΠΊΠΎΡ€Π°Π·Ρ€Π΅ΡˆΠ°ΡŽΡ‰Π΅ΠΉ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΈ Ρ‚ΠΊΠ°Π½Π΅ΠΉ Π±Π΅Π· использования контрастных вСщСств, обладая ΠΏΡ€ΠΈ этом Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΎΠΉ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ систСмами ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ, ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной, ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Π½ΠΎ-эмиссионной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Π½Π° Ρ€Ρ‹Π½ΠΊΠ΅

    NUMERAL MODELLING OF THE MECHANICAL CHARACTERISTICS OF THE COMPLEX Β«INTIMA – STENTΒ»

    No full text

    New Questioning Strategies to Early Russian Autobiographies

    No full text

    Decoring Behaviour of Chosen Moulding Materials with Alkali Silicate Based Inorganic Binders

    No full text
    This paper contains basic information about new processes for cores for cylinder heads production with alkali silicate based inorganic binders. Inorganic binders are coming back to the foreground due to their ecologically friendly nature and new technologies for cores production and new binder systems were developed. Basically these binder systems are modified alkali silicates and therefore they carry some well-known unfavourable properties with their usage. To compensate these disadvantages, the binder systems are working with additives which are most often in powder form and are added in the moulding material. This paper deals with decoring behaviour of different moulding sands as well as the influence of chosen additives on knock-out properties in laboratory terms. For this purpose, specific methods of specimen production are described. Developed methods are then used to compare decoring behaviour of chosen sands and binder systems
    • …
    corecore