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A B S T R A C T

Understanding what controls the enhanced oil recovery during water-
flooding of carbonate rocks is essential as the majority of the world’s
remaining hydrocarbon reserves are contained in carbonate rocks. To
further this understanding, in this thesis we develop a pore-scale simula-
tor that allows us to look at the fundamental physics of fluid flow and
reactive solute transport within the porous media. The simulator is based
on the combined finite element – finite volume method, it incorporates
efficient discretization schemes and can hence be applied to porous do-
mains with hundreds of pores. Our simulator includes the rule-based
method of accounting for the presence of the second immiscibly trapped
fluid phase. Provided that we know what chemical conditions initiate
enhanced oil recovery, our simulator allows us to analyse whether these
conditions occur, where they occur and how they are influenced by the
flow of the aqueous phase at the pore scale. To establish the nature of
chemical interactions between the injected brines and the carbonate rocks,
we analyze the available experimental data on the single-phase coreflood-
ing of carbonate rocks. We then build a continuum scale simulation that
incorporates various chemical reactions, such as ions adsorption and
mineral dissolution and precipitation. We match the output of the contin-
uum scale model with the experimental data to identify what chemical
interactions the ions dissolved in seawater are involved in.
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1
I N T R O D U C T I O N

Production of hydrocarbons from oil reservoirs typically occurs in up
to three distinct phases: primary, secondary and tertiary, or enhanced,
recovery. During primary recovery, the oil flow is driven by the natural
reservoir energy, such as gravity drainage or waterdrive, into the wellbore
and is brought up to the surface with artificial lift techniques, i.e. pumps.
Typically, only about 4-8% of the reservoir’s original oil in place (OOIP)
is produced during this stage. During the secondary recovery stage
an external fluid, such as water, is injected into the reservoir through
injection wells to maintain the system pressure and displace oil toward the
production well, resulting in the recovery of 20-40% of the OOIP. The limit
of this stage is reached when the injected fluid is produced in considerable
amounts from the production wells, rendering the production of oil
uneconomical. The final stage, which can in fact be initiated even before
the secondary recovery is over, includes sophisticated methods that alter
the oil or rock properties in a way that further improves the recovery of
hydrocarbons.

Naturally fractured carbonate reservoirs comprise a particularly chal-
lenging group of reservoirs to produce, while containing more than 60%
of the world’s oil reserves (Schlumberger, 2007). About 90% of carbon-
ate reservoirs are characterized as neutral-wet to preferentially oil-wet.
Moreover, the carbonate matrix permeability usually lies in the mill-
idarcy (mD) range. As a consequence, conventional waterflooding of
extensively fractured carbonate rocks can recover as low as 10% of the
OOIP. This is because water bypasses matrix blocks due to the typically
high permeability contrast between them and the fractures. At the same
time, spontaneous imbibition of water into the matrix blocks is slow
in mixed-wet or non-existent in oil-wet rocks due to the unfavourable
pore-scale capillary pressure, Pc < 0, which has to be overcome for water
to displace oil from the oil-wet pores. It is, therefore, particularly im-
portant to develop enhanced oil recovery (EOR) techniques that can be
utilized to improve the performance of carbonate reservoirs, for example
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introduction

by increasing the spontaneous imbibition rate which will lead to a better
sweep of the reservoir during the waterflooding process.

One of the more popular EOR techniques in carbonates is CO2 flooding
(Manrique et al., 2004). CO2 is miscible with oil above a certain pressure
and reduces it viscosity during the flooding process. The key problem in
applying this technique is the fact that CO2 projects are usually tied to the
availability of natural CO2 sources and transporting pipelines relatively
close to the oilfields subject to this procedure.

Alternative EOR methods include improving the outcome of the water-
flooding itself, which usually implies modification of the composition
of injected fluid in a way that triggers the liberation of oil from the rock.
This may happen due to brine-rock interactions that engender local wet-
tability changes towards more water-wet conditions. As will be discussed
in more detail below, existing experimental evidence suggests that the
presence of certain ionic species in the injected water facilitates the oil
recovery. However, little work has been done to formalize these results
and infer the exact link between the ionic transport and the two-phase
flow properties of the rock. Therefore, in this work we aim, as a first
step, to determine exactly what physicochemical mechanisms lead to
the enhancement of oil recovery during the waterflooding procedure.
Secondly, we wish to evaluate how these mechanisms are translated into
the continuum-scale description of the two-phase fluid flow, i.e. their
influence on the capillary pressure and relative permeability curves.

Numerical simulations of the relevant phenomena are employed to
reach these goals and this thesis essentially covers our work towards
the first objective, namely a numerical investigation of the mechanisms that
facilitate the oil release from carbonate rocks during waterflooding. Given the
wide scope of this mechanistic remit, we investigate a range of approaches
both at the pore level and at the continuum scale. In outline, the work
programme in this thesis examines the following areas of investigation:

1. Pore-scale modelling of the fluid velocity distribution within the
porous sample using the grid-based finite element (FE) method.
This procedure is necessary for the subsequent modelling of the
transport of dissolved ions as the velocity with which they are
advected is calculated as a result of this step. It also allows us to
calculate the sample permeability directly from the pore geometry
data.
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1.1 waterflooding efficiency as a function of brine composition

2. Pore-scale modelling of the inert solute transport based on the finite
element – finite volume method. In this step we consider how the
solute is propagated within the porous sample subject to convection
and diffusion. No chemical interactions are considered at this point.
This procedure enables us to directly calculate the dispersivity of a
porous sample.

3. Extension of the solute transport to account for the arbitrary chem-
ical reactions within the aqueous phase or between the brine and
the mineral phase. This step also describes the way to simulate the
phenomenon of surface diffusion along the fluid-solid interfaces
within the finite element – finite volume framework.

4. Rule-based method of accounting for the presence of the second
immiscibly trapped fluid phase. Provided that we know what chem-
ical conditions trigger the wettability change, this method allows
us to use pore-scale modelling to analyse whether these conditions
occur, where they occur and how they are influenced by the flow of
the aqueous phase.

5. Finally, we analyse the available experimental data on the chemical
interaction between the injected fluids and the carbonate rocks. We
then build a continuum scale simulation that incorporates various
chemical reactions, such as ions adsorption and mineral dissolution
and precipitation. We match the output of the continuum scale
model with the experimental data to identify what chemical inter-
actions the ions dissolved in seawater are involved in.

The second objective of this work is a subject of extensive research in its
own right as there are presently no established procedures to establish the
effects of the reactive solute transport on the continuum-scale properties
of the two-phase flow. We reserve this topic for the future work, as
indicated in Section 5.2.

1.1 waterflooding efficiency as a function of brine com-
position

In the last 15 years it has been demonstrated that the waterflooding
efficiency in sandstones is affected by the brine’s ionic composition (Yildiz
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1.1 waterflooding efficiency as a function of brine composition

and Morrow, 1996). Lager et al. (2008) proposed that, in sandstones, oil
components are bound to the surface of oil-wet materials, such as clays,
by cation bridging (RCOO–M–surface, where M is a multivalent cation).
If the salinity of the surrounding water is low enough, the electrical
double layer at the clay surface expands and the bound multivalent
cations become accessible for the monovalent cations dissolved in the
water. The resulting ion exchange releases the organic complexes and
changes the surface wettability.

The impact of brine ionic composition on oil recovery from carbonate
rocks has also been studied recently. The interest in this topic was kindled
by an outcome of the waterflooding programme conducted in the Ekofisk
oilfield in the North Sea in the beginning of 1980s. The resulting oil
displacement by seawater proved to be more effective than expected. This
finding was followed by a series of ongoing laboratory studies.

As spontaneous imbibition is a crucial oil-displacing phenomena in
fractured reservoirs, the majority of experimental studies so far have
concentrated on its sensitivity to the brine composition. It was demon-
strated by Standnes and Austad (2000b) that cationic surfactants of the
tetra alkyl ammonium type can act as a wettability modifier and initiate
the spontaneous imbibition of a brine into an initially oil-wet chalk core.
Subsequently in was found by Strand et al. (2003) that the presence of
SO2–

4
ion in addition to the same type of cationic surfactants further

improves the recovery by spontaneous imbibition. It was then shown by
Zhang and Austad (2005) that sulphate can change wettability even when
no surfactant is present. Further research (Strand et al., 2006; Zhang et al.,
2007) revealed that three divalent ions – SO2–

4
, Ca2+ and Mg2+ – impact

on the imbibition process, thus making seawater a promising injection
fluid for carbonate (or at least chalk) waterflooding. It was reported that
for this impact to occur sulphate had to be dissolved in the brine together
with at least one of the positively charged ions and that the presence
of SO2–

4
and Ca2+ had an effect at both low (40

◦C) and high (> 90
◦C)

temperatures, while SO2–
4

and Mg2+ only worked at high temperatures.
The amount of recovered oil was observed to increase with increasing
concentration of the relevant ions. Fig. 1.1 demonstrates the sensitivity
of the oil recovery to the composition of imbibing brines above 70

◦C,
as reported by Zhang et al. (2007). It can be seen that the addition of
Mg2+ significantly improves the recovery as long as SO2–

4
is also present
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Figure 1.1: Oil recovery during spontaneous imbibition experiments for temperatures
above 70

◦C reported in (Zhang et al., 2007). Imbibing seawater initially contained no
Ca2+ and Mg2+ ions, which is marked as SW0. Four different concentrations of SO2–

4

where used, with n in SW0×nS denoting a multiple of an average seawater concentration
of SO2–

4
. Calcium or magnesium ions where subsequently added after 43 or 53 days to

analyse their influence on oil recovery.

in the brine. It also shows that calcium alone is not enough to trigger the
enhanced recovery by the temperature jump above 100

◦C.
Probably because sulphate ions were shown to improve the recovery in

conjunction with surfactants, it was hypothesized in the above-mentioned
studies that these ions act in a similar fashion, i.e. by forming ion-pairs
with oil components which are then released from the rock surface, thus
locally altering the wettability towards more water-wet conditions. The
proposed mechanism posits that the adsorption of SO2–

4
onto the chalk

surface decreases its initially positive charge, which causes an excess of
Ca2+ to be attracted to the surface. Ca2+ reacts with the negatively charged
carboxylic group, –COO-, and some carboxylic material is removed from
the chalk surface. At elevated temperatures Mg2+ also becomes active
and in the presence of SO2–

4
it is proposed to displace calcium-carbonate

complexes [–COOCa]+ from the surface. It is argued that this process does
not occur at lower temperatures because under these conditions Mg2+

ions are strongly hydrated and are hence unlikely to react. Fig. 1.2 depicts
the idealized representation of the wettability alteration mechanisms for
both sandstones and carbonates.
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Figure 1.2: Oil recovery mechanisms in (a) sandstones and (b) carbonates proposed in
the literature. Lager et al. (2008) proposed that in negatively charged sandstones the
wettability changes due to monovalent cations (e.g. Na+) replacing the divalent cations
(e.g. Ca2+), to which the oil components are attached. Strand et al. (2006) suggested that
in positively charged carbonates oil components are directly attached to the surface and
SO2–

4
ions modify the charge leading to local wettability alteration.
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1.1 waterflooding efficiency as a function of brine composition

An alternative explanation for wettability alteration was proposed by
Hiorth et al. (2010a). These workers suggest that, at high temperatures,
Ca2+ in seawater reacts with SO2–

4
and as a result anhydrite is precipitated.

Consequently, the aqueous phase loses Ca2+ which is then supplied by
calcite dissolution. If the rock dissolution takes place at the locations
of adsorbed oil, it detaches from the rock surface, hence changing the
rock wettability. This mechanism is illustrated in Fig. 1.3. However, this
hypothesis does not explain why chalk wettability is altered at lower
temperature values (40

◦C) at which seawater is not oversaturated with
respect to anhydrite. Nevertheless, it was used by Evje and Hiorth (2010)
to construct a 1D two-phase model of spontaneous imbibition where the
transition between oil-wet and water-wet capillary pressure and relative
permeability curves was adjusted with respect to the amount of dissolved
calcite:

H(C) = [1+A ·max(C0 −C, 0)]−1, (1.1)

f(S,C) = H(C) fww(S) + [1−H(C)] fow(S),

where

C0/C (initial) moles of calcite, [mol]

H(C) weighting function

A fitting parameter

f(S) capillary pressure, [Pa], or relative permeability, [–]

In addition, the “ww” and “ow” superscripts denote water-wet and
oil-wet conditions respectively. Using this approach, the authors were
able to numerically reproduce the observed dependency of the amount
of recovered oil on temperature and aqueous concentration of sulphate
and magnesium ions. This implies that at least at high temperature chalk
dissolution can be one of the factors facilitating oil release during the
spontaneous imbibition of seawater.

To finalize the discussion of imbibition experiments, Karoussi and
Hamouda (2007) showed that the presence of SO2–

4
is not a necessary

condition to observe the improved oil recovery and that the recovery
strongly depends on the composition of the formation water. However,
the samples used in that work were water-wet.

Recently, experimental data on oil recovery during forced brine injec-
tion started to appear in the literature. Results presented by Fathi et al.
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1.1 waterflooding efficiency as a function of brine composition

oil phase

rock surface

dissolved rock surface

Figure 1.3: Idealized representation of the mechanism of oil recovery due to calcite
dissolution. Initially oil is attached to the acute edges of the rock. These regions of high
curvature are more likely to dissolve and when this happens the oil is liberated.

(2010) are in line with the data obtained from the spontaneous imbibition
experiments – a shift from formation water (which contained no SO2–

4
) to

seawater as an injected brine significantly improved the recovery factor.
Moreover, further injection of diluted seawater resulted in no additional
oil production. This finding is in direct contradiction with another publi-
cation (Yousef et al., 2010), where a reverse trend was observed – more
oil was produced as the injected seawater was progressively diluted, thus
reducing the concentration of the relevant divalent ions. These results are
presented in Fig. 1.4, see Tables 1.1-1.3 for experimental conditions. Fi-
nally, Gupta et al. (2011) performed another set of coreflood experiments,
where they concluded that the recovery improvement occurs as a result
of the reduction of Ca2+ and Mg2+ concentrations in the injected brine.

Tables 1.1-1.3 list the main properties and parameters of the discussed
experiments except for the recovery factors (RF). In the study by Karoussi
and Hamouda (2007) up to 17% of the OOIP was recovered with distilled
water, 23% with 0.1 M solution of Na

2
SO

4
and 34% with 0.1 M solution

of MgCl
2
. These results correspond to 90

◦C and distilled water as a
connate brine. However, when the same fluid was used both as a connate
brine and an imbibing brine, the recovery dropped to 20% for Na

2
SO

4

and to 16% for MgCl
2
. In the study by Strand et al. (2006) successively

using seawater with zero, average and three times average seawater
concentration as imbibing brines resulted in RFs of 8→ 14→ 24. Recovery
results reported by Zhang et al. (2007) are presented in Fig. 1.1. In the
study by Fathi et al. (2010) successive flooding with formation water (FW),
seawater (SW) and three times diluted SW led to RFs of 20 → 42→ 42.
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1.1 waterflooding efficiency as a function of brine composition
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Figure 1.4: Oil recovery during the coreflooding experiments reported by Fathi et al.
(2010) (a) and Yousef et al. (2010) (b). SW denotes seawater, while SWdn denotes seawater
mixed with distilled water such that the resulting salinity is reduced by a factor of n. SI
marks spontaneous imbibition experiments, CF – coreflood experiments. Graph in (a)
demonstrates no additional oil recovery when switching the injected brine from SW to
SWd3, while graph in (b) shows the incremental recovery correlated with the seawater
dilution.
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1.1 waterflooding efficiency as a function of brine composition

Table 1.1: Summary of previously reported controlled-salinity experiments. DW denotes
distilled water, SW – seawater, AN – acid number, PV – pore volume.

publication Karoussi and Hamouda
(2007)1

Strand et al. (2006)

Rock type Stevns Klint chalk Stevns Klint chalk
ϕ (%) / k (mD) 48-50 / 2-5 48-49 / 2-5
PV (ml) 34 19-32

Swr (%) 30-35 26-28

Injection rate (ml/min) sp. imbib. sp. imbib.
Oil AN (mg KOH/g) n/a 2.1
Injected brines DW, solutions of MgCl

2

and Na
2
SO

4

SW with varying SO
4

Temperature (◦C) 40→ 70→ 90 110

1 n-decane was used instead of oil. The contact angle measurements showed that the
rocks were water-wet. Hence recovery was observed even with DW as imbibing fluid.

However, in the study by Yousef et al. (2010) successive flooding with FW,
SW and SW diluted twice, 10, 20, 20 and 100 times resulted in RFs of 67→
74 → 83 → 85 → 85 for the first core and 74 → 82 → 93 → 94 → 94 for
the second core. Finally, Gupta et al. (2011) reported that a sequence of
FW, FW without Ca2+ and Mg2+, FW without Ca2+ and SW without SO2–

4

led to RFs of 58→ 69→ 73→ 75.
An interesting side effect of the same charge-altering mechanism, as

discussed by Austad (2008), is the induced anomalously high compaction
of chalk rocks, first observed during the production of the already men-
tioned Ekofisk oilfield in the North Sea. However, it was then experimen-
tally demonstrated by Madland et al. (2011) that the presence of SO2–

4
or

Ca2+ in the injected fluid was not necessary for compaction to occur and
that it was correlated with precipitation of magnesium-bearing minerals
and the concomitant dissolution of calcite.

To summarize, the exact nature of the seawater-chalk interaction that
leads to oil liberation remains unknown. This makes it impossible to
accurately design the EOR projects for carbonate reservoirs that involve
seawater injection as the result is uncertain. As a first step towards eluci-
dating this mechanism, it is necessary to revisit all available laboratory
evidence of seawater-chalk interaction and determine what chemical
mechanisms are responsible for the observed experimental behaviour.
More specifically, all previous speculations on the seawater-rock interac-
tion were based on series of single-phase coreflood experiments (Madland
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1.1 waterflooding efficiency as a function of brine composition

Table 1.2: Summary of previously reported controlled-salinity experiments (continued).
FW denotes formation water, SW – seawater, AN – acid number, PV – pore volume.

publication Zhang et al. (2007)2 Fathi et al. (2010)3

Rock type Stevns Klint chalk Stevns Klint chalk
ϕ (%) / k (mD) 47-49 / 2-5 46 / 1-2
PV (ml) 29-30 36

Swr (%) 21-23 8

Injection rate (ml/min) sp. imbib. 0.025

Oil AN (mg KOH/g) 2.07 1.9
Injected brines SW with varying SO

4
FW, SW, diluted SW

Temperature (◦C) 70→ 100→ 130 120

2 Initially zero Ca2+ and Mg2+ were present in the brines. Either of those was added
during the 100

◦C stage and induced additional recovery. Prior to this all brines
resulted in the recovery factor of 13% at 100

◦C. Results are presented in Fig. 1.1.
3 FW had 2x salinity of SW with high Ca2+ (2x the SW level), no SO2–

4
, low Mg2+ (1/5

of SW level).

et al., 2011; Strand et al., 2006; Zhang et al., 2007), where SO2–
4

, Ca2+ and
Mg2+ breakthrough curves were analysed at various temperatures and
relative concentrations. This is the data that we will examine in this thesis.

To systematically analyse these curves, we will construct a continuum-
scale numerical model of reactive transport in the porous medium that
can generate the numerical analogues of the experimental measurements.
By controlling what mechanisms, i.e. adsorption or dissolution and pre-
cipitation, are included in the simulations, we will be able to determine
what mechanisms control the solute concentration levels in the exper-
iments. Prior to this work, few efforts at formalizing the experimental
results in a mathematical model were made. A link between calcite dis-
solution and oil recovery was established by Hiorth et al. (2010a) as an
outcome of a 0D chemical box model of seawater at equilibrium with
calcite rock. Additionally, this model accounted for the formation of sur-
face complexes on a calcite surface in contact with an aqueous solution.
In a study by Evje et al. (2009) a 1D reactive transport model was con-
structed. It considered dissolution/precipitation processes to be kinetic
but discarded the surface complexation and as such did not account for
adsorption. Moreover, it was used to model only a single set of coreflood
experiments presented by Madland et al. (2011), where a loss of Mg2+

and an equal production of Ca2+ were observed during the injection of
MgCl2 solution into a chalk rock. Authors successfully demonstrated
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1.2 pore-scale modelling

Table 1.3: Summary of previously reported controlled-salinity experiments (continued).
FW denotes formation water, SW – seawater, AN – acid number, PV – pore volume.

publication Yousef et al. (2010)4 Gupta et al. (2011)5

Rock type Undisclosed carbonate Middle East limestone
ϕ (%) / k (mD) 25 / 40 and 68 20-25 / 2.7-9.5
PV (ml) 37 and 64 9-14

Swr (%) 10.5 and 14.5 9.5-20

Injection rate (ml/min) 1 0.1
Oil AN (mg KOH/g) 0.25 0.11

Injected brines FW, progressively diluted
SW

FW with varying hardness,
SW with varying SO

4

Temperature 100 121

4 FW had 4x salinity of SW with high Ca2+ (30x the SW level), negligible SO2–
4

, SW level
of Mg2+. Two composite cores were used in the experiments.

5 FW had 4x salinity of SW with high Ca2+ (30x the SW level), negligible SO2–
4

, SW level
of Mg2+.

that these observations could be interpreted as a precipitation of MgCO3

accompanied by a simultaneous dissolution of CaCO3.
Wettability alteration is fundamentally a pore-scale phenomena as

it affects local capillary rather than viscous forces. To this date, there
are very few pore-scale studies that investigate the interplay between
reactive transport leading to wettability alteration and the subsequent
change in the two-phase fluid flow. In this work we, therefore, construct a
novel pore-scale simulator capable of modelling the single-phase reactive
transport of the dissolved solutes. We also demonstrate how it can be
extended to account for the presence of the second trapped immiscibly
fluid phase. In the following section we will give a brief overview of the
field of the pore-scale modelling.

1.2 pore-scale modelling

The field of pore-scale simulation has grown over the last decade (Meakin
and Tartakovsky, 2009) and applications include calculating the spatial
distribution of the velocity field (Narsilio et al., 2009), solute transport
(Acharya et al., 2007; Bijeljic et al., 2004), mixing and chemical reactions
(Li et al., 2006; Tartakovsky and Neuman, 2008; Willingham et al., 2008)
and multi-phase flow (Aker et al., 1998; Blunt, 2001; Celia et al., 1995;
Knackstedt et al., 2001). Another important application of pore-scale
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1.2 pore-scale modelling

(a) (b)

Figure 1.5: A 2D slice from the tomographic image of a sandstone sample (a) and the
partitioning of this image into black pores and white grains (b). Images courtesy of
Tannaz Pak, University of Edinburgh.

modelling is related to upscaling and averaging in porous media. One ex-
ample of this is deriving the relations between the underlying microscale
variables and their averaged macroscale counterparts, such as the true
pressure in the Navier-Stokes equation versus the average pressure in
Darcy’s law (Nordbotten et al., 2007).

As mentioned earlier, pore-scale models that couple reactive solute
transport and multi-phase flow are just beginning to emerge. The need
for such models is largely driven by the problem of CO2 storage in saline
aquifers, which is characterized by a strong interplay between the multi-
phase flow and chemical processes. However, including all the relevant
pore-scale physical processes, such as partial CO2 dissolution in the aque-
ous phase which affects density and viscosity ratios between different
fluid phases, or the mixing-induced rock dissolution or precipitation, is
currently impossible in practice due to both hardware limitations and the
lack of algorithms capable of accounting for all the relevant phenomena.
Therefore, when it comes to pore-scale modelling, researches mostly
concentrate on just one aspect of a problem - either multi-phase flow
or single-phase multi-component transport. One example of a coupled
model was reported by Hammond and Unsal (2012). The model consid-
ered the transport of a single solute, whose adsorption onto the water-oil
and water-rock interfaces affected the interfacial tension and the contact
angle.
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1.2 pore-scale modelling

Prediction of the physical properties of the porous media from their
microscopic origins involves an accurate characterization of the detailed
structure of the pore space. Several approaches exist for obtaining the
pore structure. It is possible to measure it directly and non-destructively
by the means of (synchrotron) X-ray computed microtomography (Dun-
smuir et al., 1991; Spanne et al., 1994). Fig. 1.5 shows an example of a slice
through a 3D tomographic image of a sandstone sample of about 5 mm
in diameter. In general, these measurements are limited by the resolution
of the scanning equipment. Typical resolution of a CT image of a porous
sample is several micron and there is a trade-off between the resolution
and the overall sample size. Sub-micron resolution can be achieved with
alternative techniques, such as scanning electron microscopy (SEM), but
the resulting images are two-dimensional. It is possible to reconstruct the
3D pore geometry from the 2D images using statistical methods (Adler
et al., 1990; Okabe and Blunt, 2004; Roberts, 1997). These methods consist
of measuring the statistical properties, such as porosity, two-point corre-
lation function and multi-point statistics, on the available 2D images of a
porous sample. This is followed by a random generation of a 3D model
that matches the obtained properties. It was shown that statistically iden-
tical porous samples can have different hydrodynamic properties (Øren
and Bakke, 2002) mainly due to poor connectivity of the generated media.
A more elaborate statistical method, which avoids this deficiency and is
based on the Markov Chain Monte Carlo approach, was reported by Wu
et al. (2006). Process-based models have been proposed (Øren and Bakke,
2002) as an alternative to the statistical methods. In this technique, rather
than generating a sample randomly, it is constructed as a succession
of the numerical analogues of the physically justified processes, such
as grains sedimentation, compaction and diagenesis. While involving
extensive calculations, this method results in the generated media with
the pore connectivity that best matches the connectivity of the physical
porous samples.

The two most wide-spread types of methods for the numerical sim-
ulations of single-phase transport processes at the pore scale are pore-
network simulations (Blunt, 2001) and Lagrangian particle-based meth-
ods, among which lattice Boltzmann (LB) methods (Chen and Doolen,
1998) are the most popular ones. The use of pore networks to represent
multi-phase flow can be dated back to the middle of the previous century.
This approach involves additional conversion of the measured pore space
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1.2 pore-scale modelling

structure into an idealized network of pore bodies interconnected by nar-
row pore throats of various cross-section shapes. The use of a simplified
set of flow equations and the absence of the necessity to explicitly track
fluid-fluid interfaces currently renders pore networks technique the only
method that can be applied to simulating multi-phase flows in numerical
rocks with hundreds of thousands of pores. As such it currently has the
best predictive capabilities. Lopez et al. (2010) demonstrate that for rocks
with the relatively homogeneous pore geometry pore-network modelling
produces reliable results for permeability, relative permeabilities, capil-
lary pressure, initial water and residual oil saturations, Amott-Harvey
wettability index. They conducted a comparison between experimental
measurements and numerical computations of these parameters for 28

siliciclastic reservoir rocks and showed that for a wide range of porosities
(14% to 43%) and permeabilities (5 mD to 20 D) pore-network modelling
produces results in agreement with the measurements.

Pore-scale modelling can be used not only to calculate average prop-
erties but also to look at the actual pore-scale characteristics of the flow.
Ryazanov et al. (2009) implemented a network model that includes a
thermodynamically consistent criterion for existence of oil layers in the
pore corners, based on the free energy minimization (van Dijke and
Sorbie, 2006). This was later used by Sorbie et al. (2011) to investigate
the structure of residual oil as a function of sample’s wettability. Joekar-
Niasar et al. (2010a) used network modelling to investigate the capillary
pressure-saturation hysteresis. The authors argue that specific fluid-fluid
interfacial area is a major state variable for two-phase flows that is re-
quired to explain the typically observed hysteresis.

Pore-network modelling is currently the only tool that can tackle three-
phase problems on large domains. Nardi et al. (2009) presented a general
network model to simulate three-phase flow that allows for interme-
diate phase layer to be sandwiched between wetting and non-wetting
phases. The existence of these layers is determined based on the geomet-
rical considerations. It shows a fair agreement between experiments and
numerical modelling. Al-Dhahli et al. (2011) introduced a novel thermo-
dynamic criterion for formation and collapse of the phase layers (van
Dijke and Sorbie, 2003) into a pore network model and implemented a
multi-displacement mechanism that makes it possible to model water-
alternating-gas (wag) injection.
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1.2 pore-scale modelling

Pore networks also offer solutions for modelling flow through the rocks
characterized by a much more intricate multi-scale pore structure, such as
carbonates with intercrystalline microporosity, intergranular macroporos-
ity, vugs and fractures all contributing to the fluid flow. In such a case
the comparison between modelling and laboratory measurements cannot
be made unless the effects of multi-scale porosity are incorporated into
the model. Wu et al. (2011) showed that a pore-network constructed from
a micron-scale CT scan of a carbonate sample underpredicts the sample
permeability by an order of magnitude. Incorporating a sub-micron-scale
network into the micron-scale network brought the resulting permeabil-
ity much closer the experimental value. An alternative approach was
presented by Bauer et al. (2012), where sub-micron porous regions are
incorporated by means of their average porosity and permeability values.
This method, however, makes two-phase flow simulations very non-trivial
to implement.

Despite the success of pore networks as a modelling tool, it is charac-
terized by a number of limitations. Most network models are restricted
to capillary dominated conditions when the influence of viscous forces
on fluid distribution is neglected, which prevents them from being used,
for instance, to study the effects of discontinuous phase mobilization.
To rectify this, dynamic pore network models are being developed. Id-
owu and Blunt (2010) demonstrated a pore network model that accounts
for the time taken to fill network elements and allows swelling of the
wetting phase near an advancing water front. It is applied to a domain
with 100,000 pores and is shown to reproduce the Buckley-Leverett pro-
file directly from the pore-scale. Another limitation of pore networks is
the uncertainty of network shapes in representing the true pore geom-
etry. This is also an ongoing research topic. Joekar-Niasar et al. (2010b)
presented a new method for generating the pore throat cross-sections
based on recovering the whole range of shape factors present in a porous
sample. This allowed them to reproduce not only the experimentally
measured capillary pressure curves, but also the measured fluid-fluid
interfacial area curves.

Single- and multi-component transport problems can also be tackled
by means of pore-network modelling. It has been successfully used to
upscale the Brownian motion of an advected inert tracer to quantify the
sample’s dispersivity (Acharya et al., 2007). Algive et al. (2010) used
pore networks to model the pore-scale reactive transport of a CO2-rich
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1.2 pore-scale modelling

(a) (b)

Figure 1.6: A 3D CT image of a porous rock (a) and a corresponding pore network (b).
While a pore network representation is enough to recover certain flow properties of
the sample (e.g. one- and two-phase permeabilities), it is not sufficient to model the
reactive solute transport that involves fluid-rock interaction, which usually depends on
the surface roughness.

brine, allowing for pore throats to change their radii based on the amount
of dissolution or precipitation and a qualitative agreement of porosity-
permeability relation with experimental measurements was obtained.
However, because the radius change occurred uniformly along a given
throat and because the topology of the network remained the same during
the calculation, it remains to be seen how well this approach represents
the actual phenomena. An already mentioned study by Hammond and
Unsal (2012) used pore-networks to couple the transport of a sorbing
wettability altering agent with the two-phase flow. The major obstacle for
reactive transport modelling with pore networks is the fact that they do
not accurately preserve the original sample geometry, which is important
for applications that involve the fluid-rock interactions where a particular
goal is to understand how the reacted rock surface evolves over time. This
can be seen in Fig. 1.6, where a 3D CT image of a porous rock is followed
by a pore network that corresponds to it. The surface of idealized throats
in the pore network cannot adequately represent the surface features
present in the CT image.

The latter limitations can be surmounted by simulating the fluid dy-
namics directly on the pore structure images. In this case the LB method
is currently the most preferable choice. It is usually applied directly on
the voxelized regular grid, but extensions to unstructured meshes are
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1.2 pore-scale modelling

generally possible (Peng et al., 1998). Lattice Boltzmann method in its
simplest single-phase form is very easy to implement and extension to
two-phase flows are straightforward as no interface tracking is required.
Ramstad et al. (2011) showed the comparison between LB calculations of
relative permeabilities and experimental measurements and corroborates
that the method has capabilities to predict two-phase flow properties,
at least for sandstone geometries. An elaborate single-phase reactive
transport LB model that accounts for the pore geometry modifications
was developed by Kang et al. (2006). It was used by Kang et al. (2010) to
simulate the flow of CO2-rich brine through a 2D porous sample.

The LB method also allows the construction of models characterized
by multi-scale porosity. For example, Kang et al. (2002) showed how
the Darcy flow can be recovered with the LB method and how it can be
coupled with the Navier-Stokes flow in the rest of the model.

Nevertheless, care should be taken when using LB methods. Narváez
et al. (2010) showed that permeability calculations in 3D sandstone sam-
ples demonstrate a strong unphysical sensitivity to fluid viscosity through
the variation of relaxation time. The sensitivity can be reduced but not
eliminated by using a multi-relaxation time (mrt) scheme (d’Humiéres,
1994). Similar comments can be made about LB multi-phase modelling –
the most popular multi-phase Shan-Chen model (Shan and Chen, 1993)
is not thermodynamically consistent and the resulting surface tension
term in the Shan-Chen model has a different form from the one in the
two-phase Navier-Stokes equation. Kuzmin et al. (2008); Kuzmin and
Mohamad (2010) showed how Shan-Chen model can be improved using
the mrt method. The main shortcoming of the multiphase LB method is
its inability to model the problems with high viscosity and/or density
contrasts between the two fluids. It also suffers from the spurious cur-
rents, i.e. unphysical non-zero velocity values near the fluid interface for
the systems at equilibrium. Finally, the multiphase LB method requires to
use separate particle populations for different fluids, thus significantly
increasing the computational burden of the algorithm. This is in contrast
to the grid-based methods where a single set of equations is solved on
the domain irrespective of the number of the fluid phases and the phase
separation is achieved by means of the interface tracking.

LB methods only discern between the fluid and the solid nodes of a
given numerical grid. This presents a drawback of LB approach with
respect to two-phase flow modelling as compared to the pore-network
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1.2 pore-scale modelling

technique. Namely, it becomes practically impossible to include the fluid
layers that form in the pore corners, because this would require an
unreasonable level of mesh refinement in the regions occupied by these
layers. As a result, the fluid connectivity within the pore space is not
represented correctly with the LB methods.

Despite being easy to implement in the code, multi-phase LB methods
are very computationally demanding. The matter is mitigated by the fact
that LB schemes are embarrassingly parallel, but they still require a large
number of computational nodes if a calculation is to be conducted on a
reasonably large domain. As an example, a mature open-source LB code
Palabos was used by Parmigiani et al. (2011) to model two-phase flow
coupled with solid melting. Authors indicate that for each simulation they
used 2000 processors with run times of up to 60 hours for the samples
with 200 × 200 × 300 lattice nodes.

As stated above, the LB method is not the only particle-based approach
and other examples include Dissipative Particle Dynamic (DPD) (Hooger-
brugge and Koelman, 1992), Smoothed Particle Hydrodynamic (SPH)
(Lucy, 1977) and Moving Particle Semi-implicit (MPS) (Koshizuka et al.,
1995). The use of SPH method for simulating two-phase flows and single-
phase flows with solute precipitation was demonstrated by Tartakovsky
et al. (2007b,a), albeit only for 2D models. Ovaysi and Piri (2011) used
MPS to investigate the influence of non-linear inertial term of Navier-
Stokes equation on the dispersion. The main advantage of MPS method
among other particle methods is its ability to simulate the flow of truly
incompressible fluids.

While particle-based methods offer means to recover the solution of the
Navier-Stokes equation, it is possible to seek its solution directly, using
traditional grid-based approaches, such as finite difference, finite element
or finite volume methods. For the single-phase applications this is the
preferred approach because of its better numerical efficiency compared
to all particle-based methods. Having said this, the main obstacle here
is still the amount of computational work, which grows rapidly with
the complexity of domain geometry (i.e., number of nodes required
to correctly represent the domain boundaries increases) and with the
dimensionality of the problem. This is because the inversion of the matrix
representing the discretized equations for the geometry of interest is very
costly, prohibiting the use of large pore samples or complex geometries.
Therefore, this method is usually applied either in 2D (Garmeh et al.,
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1.2 pore-scale modelling

2009) or in 3D with a simplified domain geometry, such as packs of
spheres (Cardenas, 2008, 2009).

Previous work that deals with the Navier-Stokes solution on experi-
mentally measured pore geometries uses relatively small sample sizes
(Fourie et al., 2007; Gerbaux et al., 2009; Malinouskaya et al., 2008). How-
ever, recently Mostaghimi et al. (2010) used finite difference method
to solve Stokes equation on a large sample (300 × 300 × 300 voxels),
followed by a streamline-based algorithm to simulate the solute trans-
port. An interesting approach was demonstrated by Smolarkiewicz and
Larrabee Winter (2010), where grain surfaces are introduced not through
mesh conformance but with an immersed boundary method. Other meth-
ods were suggested that approximate the solution of the Navier-Stokes
problem (Akanji and Matthäi, 2010), but their comparison against the
exact solution requires further analysis.

Several method exist that extend the Navier-Stokes equation to the
description of the multi-phase fluid flows. These include volume of
fluid (Hirt and Nichols, 1981), level-set (Sethian, 1999), and phase-field
(Jacqmin, 1999) methods. The volume of fluid method is hard to combine
with arbitrarily shaped elements, usually met in the unstructured meshes;
it also produces discontinuous interface surfaces. The level-set method
does not strictly conserve the fluid mass and does not provide direct
means to specify the wetting angle at the fluid-solid interface. The phase
field method requires local grid refinement near the fluid interface, which
is again non-trivial to implement on unstructured grids. Unstructured
meshes also do not provide a clear way of calculating the local interface
curvature which is necessary for computing the surface tension forces in
all the above-mentioned approaches. To this date very few applications
of these methods to the problems of the porous media fluid flows were
reported in the literature. Prodanovic and Bryant (2006) used level-set
method to simulate quasi-static drainage and imbibition processes, i.e.
omitting the solution of the Navier-Stokes equations. Xu et al. (2011)
used the volume of fluid method with the Navier-Stokes solution on a
small idealized 3D porous domain to model CO2 injection. At present
the potential applications of these methods far exceed the available
implementations.

The large body of research that deals with various methods for single-
and multi-phase flow modelling at the pore-scale suggests an on-going
interest in methods that link 3D images of porous rocks an numerical
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modelling of their various transport properties. Despite that, as suggested
by Sorbie and Skauge (2011), the pore-scale modelling can never be
truly predictive in the sense that the overall number of parameters that
characterize the construction of a numerical pore scale model is larger
than the number of parameters available from the laboratory data. It is,
however, an invaluable tool for explaining the observed experimental
measurements as well their extrapolation outside the conditions (i.e.
temperatures, solute concentrations, etc.) available in the laboratory.

1.3 structure of the thesis

The rest of the thesis is structured as follows. In Chapter 2 we describe
the numerical method for simulating the single-phase fluid flow and
inert solute transport in porous media. The chapter describes how the
experimental computed tomography data is converted into a numerical
grid. It is subsequently used to solve the Stokes equations to obtain fluid
velocity profile and the advection-diffusion equation to describe the solute
transport. In Chapter 3 we extend this method to include the reactive
transport of single or multiple components. We also describe a rule-based
method based on pore size distribution to obtain the two-phase fluid
distribution within the pore space. In Chapter 4 we revisit the available
experimental measurements of the chemical interaction between seawater
and chalk rocks and determine what chemical effects can explain these
measurements. We conclude the chapter with the discussion on what
implications these might have on the two-phase flow in chalk. We finish
the thesis with recommendations on how this work can be extended
in the future. Fig. 1.7 demonstrates the structure diagram of this thesis
including the potential avenues for the future work.
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Objective
Numerical investigation of the 

mechanisms that facilitate the oil 
release from carbonate rocks during 

waterflooding

Chapter 2
Pore-scale simulation of single-phase fluid 
flow and inert solute transport in porous 

media

Development of tools for 
the numerical 

investigation of a generic 
oil/brine/rock system 

Chapter 3
Extension of the pore-scale simulator...

...to include arbitrary 
chemical reactions

...to account for the 
immiscibly trapped 
second fluid phase

Chapter 4
Continuum scale simulation of the 

published coreflooding experiments to 
determine the underlying chemical 

reactions between the brine and the rock

Study of a specific 
seawater/chalk system

Present work

Future work

Extension of chapter 4 to the analysis of 
chemical interactions in oil/water and oil/

rock systems

Combination of pore-scale simulation tools 
with specific chemical reactions to analyse 

in what circumstances the conditions 
favourable for wettability alteration 

transpire at the pore level

Figure 1.7: Organization of the thesis including the potential directions for the future
work.
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2.1 introduction

Understanding the fundamental physics of fluid flow and transport in
porous media is a crucial topic for all fields dealing with mass and heat
transfer in subsurface systems, such as groundwater reservoirs, saline
aquifers targeted for CO2 storage, oil and gas fields or geothermal fields.
Continuum-scale models, which are used to describe flow at the scale
of a reservoir, rely on various macroscopic parameters, such as the effec-
tive permeability, porosity or dispersivity. However, these macroscopic
parameters in turn depend on the underlying microscopic properties of
the system. They can be measured either experimentally or in some cases
computed by means of numerical modelling of physical phenomena at
the pore scale. The advantages of the second approach lie in the fact that,
once the numerical algorithm is established, it can complement exper-
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2.1 introduction

imental data by providing additional information and understanding
about the phenomena under study. For instance, numerical modelling can
show the details of fluid flow within separate pores of a rock sample and
give insight into why a macroscopic parameter such as dispersivity or the
extent of reacted grain surface area behaves in a certain way. Therefore,
it is important to develop pore-scale models that allow us to predict the
fluid flow properties directly from the information about the pore space
geometry. One impediment to this upscaling process is the complexity of
the geometry and topology of the pore system in realistic rocks.

In this work, we present a computationally efficient approach to simu-
late single-phase fluid flow and solute transport in porous media. It is
based on the unstructured FE - finite volume (FV) method that resolves
pore space geometry in great detail while solving the fundamental Navier-
Stokes and advection-diffusion equations without invoking additional
physical assumptions. Our FE-FV realization is made using the Complex
System Modelling Platform (CSMP++) (Matthäi et al., 2007), our in-house
object-oriented finite element - finite volume based C++ library tailored to
simulating a wide range of fluid flow processes in geometrically complex
porous media. The computational domain is discretized by an unstruc-
tured FE method and contains a complementary FV grid. Unstructured
meshes with varying element sizes result in accurate capturing of grain
boundary shapes while at the same time avoiding the overrefinement
of internal regions of large pores. The meshes are constructed from X-
ray computer tomography scans of real 3D porous samples, but could
equally well be applied to any pore system model, e.g. from a 3D numer-
ical reconstruction method (Wu et al., 2004, 2006). In order to increase
the efficiency of the calculations, we use CSMP++ in conjunction with an
algebraic multigrid (AMG) solver (Stüben, 2001). AMG methods have the
distinctive advantage that they scale linearly as a function of the number
of the unknowns.

We solve the Stokes equation at the pore scale for the full FE grid to
obtain the velocity field for single phase flow, from which permeability
of the sample can be calculated. With this velocity field we then solve the
tracer solute transport equation for a species with molecular diffusion
coefficient, Dm, in order to calculate the upscaled dispersion coefficient
D. This procedure is repeated at a range of flow velocities to obtain D
as a function of flow rate; more precisely we construct two plots: D/Ua
vs Peclet number Pe = Ua/Dm and D/Dm vs Pe, where U is an average
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flow velocity and a is an average grain size. The first plot highlights
the transition between various types of flow regime while the second
one allows a quantitative comparison of sample dispersivities with other
published results. Both results are compared with the previously reported
experimental and numerical findings.

2.2 numerical methods

2.2.1 Continuous formulation of fluid flow equations

The partial differential equations that govern the incompressible New-
tonian fluid flow within an arbitrary domain Ω are the Navier-Stokes
equations. These equations arise from applying Newton’s second law to
fluid motion, with the fluid stress being a combination of the shear stress
between parallel fluid layers (proportional to the gradient of velocity)
and the local pressure gradient

ρ
du
dt

= ρ
∂u
∂t

+ ρ(u · ∇)u = µ∇2u −∇p. (2.1)

There are four unknowns in Eq. 2.1 (vector u and scalar p) and only
three equations. An additional condition necessary to solve the Navier-
Stokes equations is the law of mass conservation. For an isothermal
incompressible fluid it assumes the form

∇ · u = 0, (2.2)

where the following notation is used

ux(y) =
1

2µ

∂p

∂x

(
y2 − a2

)
2a x

y

Figure 2.1: Velocity profile for a viscous fluid in a 2D channel with parallel walls subject
to a constant pressure gradient, commonly known as the Poiseuille flow.
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p pressure, [Pa]

ρ density, [kg/m3]

µ viscosity, [Pa·s]

u velocity, [m/s]

Perhaps the most surprising fact regarding the Navier-Stokes equations
is that despite the immense importance of their solution to many fields
of science and engineering (e.g. weather prediction, aircraft design, flow
in blood vessels, labs-on-a-chip design), there is no general proof of its
existence and smoothness. At the time of writing of this thesis a prize of
$1,000,000 is offered by Clay Mathematics Institute to the first person to
solve this problem.

In what follows, we consider the case of creeping flow, characterized by
a very low Reynolds number (Re ∼ 10−1). This condition occurs in most
porous media flow problems and is well studied (Happel and Brenner,
1983). In this case the non-linear term in Eq. (2.1) vanishes. Additionally,
in this work we focus on the steady-state flows and, therefore, we solve
Eq. (2.1) without considering the time derivative term. Overall, the gov-
erning Stokes equations describing laminar steady-state flow of a single
fluid phase in a porous medium are

µ∇2u = ∇p. (2.3)

The boundary conditions, necessary to close Eqs. (2.2)-(2.3), include
the no-slip condition at the rigid boundaries, i.e. u|Γrigid = 0, as well
as the proper conditions at the inflow and outflow boundaries. Instead
of assigning the inflow velocity profile, which can be considered as a
more traditional type of Dirichlet boundary conditions, we follow the
procedure described by Heywood et al. (1996), in order to impose the
prescribed pressure drop across the porous sample. Namely, we set that

p− µ∂nu|Γin/out
= Pin/out (2.4)

for both the inflow and outflow boundaries Γin/out, where Pin/out are the
desired pressure values and ∂n denotes a spatial derivative in a direction
normal to the corresponding boundary. The discrepancy between the
intended and realized pressure drop due to the second term of left-hand
side of Eq. (2.4) is proportional to 1/r3 in the three-dimensional case,
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where r is a curvature radius of the boundary surface. Hence, in our case
of flat boundaries, this mismatch is cancelled. Therefore, the final system
of equations to be solved numerically assumes the following form

µ∇2u = ∇p in Ω,

∇ · u = 0 in Ω,

u = 0 on Γrigid,

p− µ∂nu = Pin on Γin,

p− µ∂nu = Pout on Γout.

(2.5)

In the general case, the solution of Eq. 2.5 cannot be obtained analyti-
cally. A well-known textbook example where the analytical solution is
known is the Poiseuille flow between two parallel plates in 2D (depicted
in Fig. 2.1) or in a cylinder in 3D, where a constant pressure gradient
is applied to the fluid parallel to the channel boundaries. In this case
the fluid velocity is collinear to the pressure gradient and its magnitude
increases quadratically as a function of the distance from the channel
walls, reaching its maximum in the centre. However, more complex cases
require numerical treatment. Below we describe an algorithm of solving
Eq. 2.5 using the FE method.

To finalize the short introduction to the Navier-Stokes equations, we
note that volume averaging of Eq. 2.3 can be used to obtain the phe-
nomenologically derived Darcy law

q = −
1

µ
k · ∇p̂, (2.6)

where q is a volumetric flux vector [m/s], k is a permeability tensor [m2],
which depends on the pore geometry, and p̂ denotes average macroscopic
pressure. In this case it can be seen that q = 〈ϕu〉, where 〈·〉 denotes
volume averaging operation and ϕ is a porosity value, while the link be-
tween p̂ and microscopic pressure p is still an open question (Nordbotten
et al., 2007).

2.2.2 Weak form of Stokes equation

The FE method is based upon discretization of an integral (weak) form
of the considered partial differential equation. Hence, as a first step, we
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have to formulate the weak form of Eq. 2.3. Here we will briefly outline
the necessary steps; further details can be found, for instance, in the book
by Donea and Huerta (2003).

The weak form requires the introduction of classes of functions for
the velocity field and the pressure field. The space of trial solutions
with respect to velocity u is denoted by S. It contains the approximating
functions for velocity and is characterized as follows:

S := {u ∈H1(Ω) | u = uD on ΓD}. (2.7)

This means that space S consists of vectors, all components of which are
square integrable and their first derivatives are also square integrable.
Also these vectors have to satisfy the Dirichlet boundary conditions on
ΓD, a part of the boundary ∂Ω where those conditions are prescribed. In
our case ΓD = Γridig and u = 0. The weighting functions of velocity, w,
belong to V, which is almost the same as S with the exception that the
weighting functions are required to vanish on ΓD:

V := {w ∈H1(Ω) | w = 0 on ΓD}. (2.8)

Note that for our problem (2.5) spaces V and S essentially coincide, but
this is not a general case.

Finally, we introduce a space of functions, denoted Q, for the pressure.
As we shall see, spatial derivatives of pressure do not appear in the weak
form of the Stokes problem; thus functions in Q are simply required to
be square integrable

Q := L2(Ω). (2.9)

Moreover, since there are no explicit Dirichlet boundary conditions on
pressure, the space Q generally suffices as both the trial space and the
weighting function space.

Once all the necessary spaces are established, we can construct the weak
form of the system (2.5). For this we multiply the governing equations
by the weighting functions (the first equation in Eq. 2.3 is multiplied
by w ∈ V and the second by q ∈ Q) and integrate the result over the
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computational domain Ω. Omitting the intermediate calculations, this
results in: a(w, u) + b(w,p) = (w,Pinnin)Γin + (w,Poutnout)Γout

,

b(u,q) = 0.
(2.10)

Here nin/out denote normal vectors to corresponding boundaries and the
following definitions are utilized:

a(w, u) =
∫
Ω
∇w : µ∇u dV =

∫
Ω

∑
i

∑
j

µ
∂wi
∂xj

∂ui
∂xj

dV ,

b(u,q) = −

∫
Ω
q∇ · u dV , (w, t)Γ =

∫
Γ
(w · t)dS.

(2.11)

Therefore, we can see that imposed pressure drop condition manifests
itself in two surface integrals in the right-hand side part of the weak
form. A solution of the weak formulation is a pair of trial functions
(u,p) ∈ S×Q that satisfies Eq. 2.10 for ∀(w,q) ∈ V×Q.

2.2.3 Discrete form of Stokes equations

Finally, we establish the discretization of the weak form, which requires
discretization of both trial and weighting functions.

Trial functions for pressure and velocity components are approximated
as

uhi (x) =
∑
nodes

NA(x)uiA, ph(x) =
∑
nodes

NA(x)pA, (2.12)

where NA is a shape function associated with global node number A,
and uiA and pA are the values of uhi (x) and ph(x) at a node number A. In
general case velocity and pressure nodes, as well as the shape functions,
can be different. With respect to Stokes equation, the choice of shape
functions has to satisfy the so-called Ladyzhenskaya-Babuška-Brezzi (lbb)
compatibility condition (Babuška, 1971; Brezzi, 1974; Ladyzhenskaya,
1969). This condition is not satisfied if the shape functions are chosen to be
linear for both velocity and pressure; a quadratic function for velocity has
to be used instead. In order to reduce the amount of computational work
and use the same first order of approximation for both uhi (x) and ph(x),
we implement the Galerkin/least-squares (GLS) method (Hughes and
Franca, 1987), which makes it possible to circumvent the lbb condition.
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This method exhibits stable and convergent approximation for any choice
of the discrete velocity and pressure interpolations. Existence, uniqueness
and error behavior of the resulting FE solution has been demonstrated by
Zhou and Feng (1993).

Weighting functions in the standard FE method are limited to a set
of all nodal shape functions NA. Therefore, substituting Eq. (2.12) into
Eq. (2.10) together with the weighting functions NA yields the following
system of linear equations

Kµ 0 0 −Gx

0 Kµ 0 −Gy

0 0 Kµ −Gz

GT
x GT

y GT
z Kst

 ·


ûx

ûy

ûz

p̂

 =


f̂x

f̂y

f̂z

0̂

 . (2.13)

The hat sign indicates a vector of nodal values, for example

ûx = [ux1ux2 . . . uxn ]
T . (2.14)

Every entry on the left-hand side matrix of Eq. (2.13) is a submatrix of
the size of n×n, where n is the number of mesh points. Each element’s
contribution to these submatrices is calculated as follows

Ke
µ = µ

∫
Ωe

(∑
i

∂N̂T

∂xi

∂N̂
∂xi

)
dV , (2.15)

Ke
st =

∫
Ωe
τe

(∑
i

∂N̂T

∂xi

∂N̂
∂xi

)
dV , (2.16)

Ge
xi

=

∫
Ωe

∂N̂T

∂xi
N̂ dV . (2.17)

Here Ωe is an element volume, N̂ is a vector containing nodal shape
functions, N̂ = [N1 N2 N3 . . . Nn]. Symbols ûxi and p̂ denote nodal
unknowns of velocity components and pressure and f̂xi are right-hand
side vectors containing the corresponding boundary conditions. Finally,
submatrix Kst comes from the GLS stabilization technique where τe is
an element-wise stabilization parameter, which is best chosen as τe =

αh2e/4µ (Codina, 2000). In this definition he is a measure of element size
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and α is a constant of the order of unity. The choice α = 2/3 appears to
be optimal for linear elements.

It is also worth mentioning that arranging the system Eq. (2.13) unknown-
wise, i.e. seeking a solution vector in the form

[ux1 . . . uxn uy1 . . . uyn uz1 . . . uzn p1 . . . pn]
T , (2.18)

results in the sparse matrix that has an excessively large bandwidth.
Therefore, we rearrange the vector point-wise, such that the solution
vector has the form

[ux1 uy1 uz1 p1 . . . uxn uyn uzn pn]
T . (2.19)

When viewed in the light of pore-scale modelling of the fluid flow,
the benefits of the Stokes FE discretization scheme that we employ are
many. First, stabilized FE formulation allows us to use the first order of
approximation for both velocity and pressure fields. This becomes very
important when the fluid flow is to be calculated on the domains with
millions of elements, as it enables us to significantly reduce the size of a
linear system to be solved. Moreover, when combined with the domain
parallelization, our discretization scheme results in less inter-processor
communication as compared to the mixed element formulations. Finally,
the choice of FE over finite difference (FD) of FV methods allows us to
obtain a solution of the steady-state incompressible Stokes problem in
a single computational step rather than resorting to iterative schemes
that involve intermediate pressure and velocity correction stages or the
artificial compressibility methods with marching in pseudo-time. There-
fore, we believe that our implementation of the numerical solution of the
Stokes equation is best suited for the purpose of pore-scale modelling.

2.2.4 Benchmarking against analytical solution

In order to verify the convergence of our FE scheme, we benchmarked
it against an analytical solution for the stationary incompressible Stokes
flow taken from the book by Donea and Huerta (2003). The problem
consists of determining the velocity field u = (ux,uy) and the pressure p
in a 2D square domain Ω = [0, 1]× [0, 1] with a prescribed body force b
within Ω and a no-slip boundary condition on ∂Ω
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Figure 2.2: Velocity and pressure error in L2-norm versus characteristic element size h.
Velocity field demonstrates the linear convergence while pressure converges sub-linearly
due to the implemented GLS stabilization technique.


−µ∇2u +∇p = b in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.

(2.20)

Fluid viscosity is taken as unity and the components of the body force
b are prescribed as

bx = (12− 24y)x4 + (−24+ 48y)x3 + (−48y+ 72y2 − 48y3 + 12)x2

+(−2+ 24y− 72y2 + 48y3)x+ 1− 4y+ 12y2 − 8y3,

by = (8− 48y+ 48y2)x3 + (−24+ 72y− 72y2)x2

+(4− 24y+ 48y2 − 48y3 + 24y4)x− 12y2 + 24y3 − 12y4.
(2.21)

The exact analytical solution for this problem is

ux(x,y) = x2(1− x)2(2y− 6y2 + 4y3),

uy(x,y) = −y2(1− y)2(2x− 6x2 + 4x3),

p(x,y) = x(1− x).

(2.22)

A presence of the body force leads to a slight modification of a right-
hand side vector as compared to (2.13), but otherwise the linear system
to be solved has the same structure. Fig. 2.2 shows that the numerical
error, measured in the L2 norm, decreases as the mesh is refined. As
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mentioned before, we use linear elements for both velocity and pressure
and therefore expect that the error decreases as O(h). Numerical results
show that the error for the velocity field decreases at this rate while the
pressure converges at half the rate. This is due to the pressure diffusion
introduced in the stabilization term. The same difference in convergence
rates for velocity and pressure would hold for a more conventional mixed
FE method.

2.2.5 Combined FE-FV method for advection-diffusion equation

Transport of an inert solute, denoted as C(x, t) and with the units of
[mol/l], within a fluid with an absence of volumetric sources and sinks
is described by the general advection-diffusion equation (ADE)

∂C(x, t)
∂t

= ∇ · (Dm∇C) −∇ · (uC), (2.23)

where x is a coordinate vector and Dm is a molecular diffusivity [m2/s].
The velocity u in each pore is directly given by the solution of the Stokes
equation as described above. As a boundary condition, we keep C value
as a constant at the inflow boundary and allow it to undergo pure
advection at the outflow boundary,

C(x, t)|Γin = C0, ∇C(x, t) · n|Γout
= 0. (2.24)

Equation (2.23) is solved by Godunov operator splitting (Godunov,
1959), which assumes that the total time derivative can be calculated as a
summation of the diffusion step and advection step. Applying the opera-
tor splitting technique has the advantage that we can use two different
numerical methods to solve the diffusion and advection components,
respectively. The diffusion derivative, with the assumption of constant
diffusivity and absence of volumetric sinks and sources, is given by(

∂C

∂t

)
diff

= Dm∇2C, (2.25)

which we solve using the FE method. The FE procedures necessary for
solving the diffusion equation are well established (Istok, 1989) and
similar to those described in Section 2.2.2, albeit involving only a single set
of unknowns. Hence no special techniques are required to implement the
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Figure 2.3: A simple 2D finite element mesh (dashed) with the corresponding and
virtual node-centred finite volume mesh (solid). Mesh nodes are marked as filled black
circles.

first order of approximation for the solute concentration. Discretization
of the relevant weak form results in the following linear system (implicit
backward Euler scheme is used for time discretization)(

M
∆t

− KD

)
Ĉt+∆t =

M
∆t

Ĉt. (2.26)

The element contribution matrices are given by

Ke
D = Dm

∫
Ωe

(∑
i

∂N̂T

∂xi

∂N̂
∂xi

)
dV , (2.27)

Me =

∫
Ωe

N̂T N̂ dV . (2.28)

The advection derivative is given by(
∂C

∂t

)
adv

= −∇ · (uC), (2.29)

which we solve using the mass and shock preserving FV method.
A FV mesh is generated as a complement to a FE mesh around the

corner nodes of each finite element (Geiger et al., 2004; Paluszny et al.,
2007). Faces of each finite volume are constructed by connecting the
finite element barycentres with the barycentres of its faces and edges,
thus forming a cell around each node. A corresponding 2D FE-FV mesh
representation is shown on Fig. 2.3.

We integrate Eq. (2.29) over a finite volume Vi, corresponding to a
node i, and apply the Gauss-Ostrogradsky theorem

34



2.2 numerical methods

∫
Vi

∂C(t)

∂t
dV = −

∮
Ai

n · uC(t)dA. (2.30)

Here Ai is the boundary area of the finite volume Vi and n is the outward
pointing normal vector of a FV boundary. The area integral on the right-
hand side of Eq. (2.30) can be represented as a sum over all FV faces,
marked with index j (see Fig. 2.3). By discretizing the time-derivative on
the left-hand side of Eq. (2.30) using a backward Euler scheme, we obtain
the following formulation

Ct+∆ti = Cti −
∆t

Vi

∑
j

(nj · uj)Ct+∆tj Aj. (2.31)

A value of solute concentration at a jth face is taken to be equal to a
value at an upstream node, i.e. a node for which (nj · uj) > 0. The value
of velocity uj is calculated by interpolation of the nodal values onto the
barycentre of an element which the face j belongs to. We use the implicit
formulation because the presence of very small elements in the meshes
that represent porous samples leads to an excessively restricting Courant-
Friedrichs-Lewy (CFL) criterion. For meshes used in this work, it would
require about 105 time steps in order to fully saturate them with an inert
solute. With the implicit method it was possible to reduce the amount of
time steps 100 times without sacrificing numerical accuracy. For all cases
when the ADE was solved in this work, a maximum acceptable time step
was empirically calculated such that the evolution of the concentration
profile remained the same within a desired tolerance when the time step
was halved. Fig. 2.4 demonstrates the application of this criterion: for
every time step we calculate the average effluent concentration of a solute
as a function of the simulation time (see Section 2.3.3) and reduce the
step until the resulting curve does not change.

The use of FE-FV formulation ensures that we keep the number of de-
grees of freedom low. Combined with the implicit time stepping scheme
it allows us to solve the ADE directly on the very large computational
domains in a reasonable amount of wall-clock time. This makes our
approach an ideal choice for modelling solute transport at the pore scale
among the variety of available candidates.
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Figure 2.4: Criterion for choosing the time step for the transport calculations. For every
time step we calculate the average effluent concentration of a solute as a function of the
simulation time (see Section 2.3.3) and reduce the step until the resulting curve does
not change.

2.2.6 Algebraic multigrid method

The 3D volumetric meshes, reconstructed from the porous sample com-
puted tomography (CT) measurements, are characterized by a large num-
ber of nodes (of the order of millions). As can be seen from the the
structure of Eq. (2.13) it contains four times as many unknowns as the
number of FE nodes. Therefore, highly efficient solvers are required to
find an approximate solution for a linear system of this size. In our ap-
proach we use the algebraic multigrid library SAMG (Stüben and Clees,
2005), developed at the Fraunhofer Institute for Algorithms and Scientific
Computing.

The two main principles of multigrid approach – error smoothing and
coarse grid correction – are demonstrated on Fig. 2.5. Let us consider
a linear problem Ax = b. On every grid Ωh, starting with the finest
level, an error smoothing operation (Sh) is applied first, where error
e = x − x̃ is a difference between exact (x) and current (x̃) solutions. This
operation is intended to rapidly reduce the high-frequency component
of e. This is followed by projection (also called restriction, R2hh ) of the
solution to the next coarse level, where low-frequency error components
of the previous fine level turn into high frequency errors again. Another
smoothing step reduces e further and another restriction takes place. The
procedure is carried forward until the coarse level is small enough for the
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Figure 2.5: Schematic representation of a single multigrid cycle. Ω denotes multiple
levels, S represents a smoothing step, R – restriction step, I – interpolation step. Direct
solution is calculated at the coarsest level.

solution on it to be calculated exactly. It is then interpolated (Ih2h) back
to fine levels. The idea of AMG is to perform these operations directly
on certain classes of sparse matrix equations. Therefore, in AMG method
no geometric information needs to be available for the construction of
the multilevel hierarchy. Coarse levels (Ω2h), inter-grid transfer (R2hh , Ih2h)
and coarse level operators (S2h) are built automatically, based purely on
algebraic information explicitly or implicitly contained in the underlying
matrix (such as size and/or sign of the matrix entries). This makes
AMG especially suited for applications on unstructured grids where the
implementation of geometric multilevel approaches is too complicated if
possible at all.

SAMG approximates the problem Ax = b iteratively using two-part
process. The first part is the setup phase which recursively carries out four
steps. First, the matrix connectivity is analysed. Second, based on this
analysis a subset of unknowns is constructed to represent the next coarser
level. Third, restriction and interpolation operators are established, which
transfer information between different levels. Finally, the coarse-level
matrix problems are assembled. The second part is a solution phase
which uses the resulting components of the setup phase to carry out the
iterative multigrid cycle, usually termed the V-cycle. One V-cycle employs
stepping from the finest level to the coarsest one and back. On each level
smoothing is performed so that coarser level can effectively contribute to
improving finer level quantities. Cycling is carried out repeatedly until
the trial solution x̃ approximates the problem Ax = b within numerical
precision such that x̃ ≈ x.
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This cycling on multiple grids has the advantage that the CPU time
and memory requirements of algebraic multigrid solvers scale as O(n),
where n is the number of unknowns, i.e. the size of x. This is a significant
improvement over direct, ILU or conjugate gradient solvers for which the
amount of numerical operations increases as O(nα) where α > 1.

The SAMG package is not just an AMG implementation for one particular
problem type but rather a complete multilevel framework. Several setup
strategies are available that cover various types of coupled systems of
partial differential equations (PDEs). We found that in our particular case
the solver works best if we use ILU factorization with no fill-in (ILU(0))
as a smoother in combination with a point-based coarsening approach
and fluid pressure as a primary unknown. The former means that the
matrix has to be reordered in a way described at the end of Section 2.2.3.
The latter means that the construction of coarser levels of FE linear
system from Stokes equation is performed based on the connectivity
structure of the fluid pressure diagonal matrix blocks. Transfer operators
are constructed for each unknown separately, following the standard
AMG procedure for single-unknown problems (Brandt et al., 1982; Stüben,
1999). Finally, SAMG is not used as a stand-alone solver. Each V-cycle
rather serves as a preconditioner for GMRES(20) (GMRES restarted in every
20 steps) iterative solver.

It is clear that the problem of direct 3D pore-scale modelling of fluid
flow and transport is characterized by a large number of degrees of
freedom and that this number quickly increases with the growth of the
domain size. More formally, if we assume that Q represents a number of
voxels per one dimension, than the total amount of degrees of freedom
will scale as n = O(Q3). The computational work scales, as described
above, as O(nα), where α depends on the employed linear solver. As a
result, the required computing time scales as T = O(Q3α). Clearly, it is
essential to use efficient solvers with the optimum scaling (α = 1) if one
wishes to work with the domains of a representative size. We, therefore,
consider the algebraic multigrid solver a crux of our approach, that lets
us bring the problem, that was until recently considered tractable only
using large computer clusters, to the domain of problems manageable
with desktop computers.

38



2.2 numerical methods

Figure 2.6: Partitioning of a FE mesh in 2D. Original mesh (a) is split into two sub-meshes
(b). They overlap by a single layer of elements shown in grey colour. Arrows represent
the inter-processor communication that involves sending and receiving values between
the corresponding nodes of two partitions.

2.2.7 Parallel discretization

Despite the high efficiency of the AMG method, models that involve realis-
tic 3D pore geometries can require an unpractical amount of memory and,
to a lesser extent, computing time. Apart from algorithmic and hardware
improvements, an effective mean of gaining a significant speedup is task
parallelization (Coumou et al., 2008). In our code we employ the domain
decomposition procedure to run 3D models on multiple processors. We
use node-level graph partitioner METIS (Karypis and Kumar, 1998) to
automatically decompose a domain into a number of adjacent subdo-
mains. Each of them is then treated on a separate processor. The resulting
partitions overlap by exactly one layer of elements (usually called halo
elements) that represent the communication volume between processors
(see Fig. 2.6). Since each processor includes halo elements in the eval-
uation of the local FE matrices, restricting the overlap to a single layer
ensures that the memory overhead of domain decomposition is kept to a
minimum. Therefore the overall memory requirements per computational
node are reduced by a factor almost linearly proportional to a number of
partitions. The information between individual CPUs is exchanged using
the MPI protocol (Gropp et al., 1996). Fig. 2.7 demonstrates the result of
partitioning of a complex 3D tetrahedral mesh in 16 subdomains. Each
subdomain contains approximately the same number of elements so as
to balance the computational load between individual CPUs.

39



2.2 numerical methods

Figure 2.7: Partitioning of a 3D tetrahedral mesh representing the pore space of a
sandstone sample in 16 subdomains of approximately equal size.

The SAMG solver has a parallelized counterpart – SAMGp (Krechel and
Stüben, 2001). It is designed to take advantage of the matrices produced
by domain decomposition, providing similar numerical behaviour and
convergence properties as the sequential version. It has been observed
that SAMGp scales almost as O(n/np), where n is again the number of
unknowns and np is the number of processors, as long as this ratio is
not less than 50k. When less than 50k degrees of freedom fall on each
processor then, as the coarse levels are being generated, they become
too small to be efficiently spread between all participating CPUs. Instead,
coarse levels are joined together and treated on only a portion of all
available processors, hence resulting in the load imbalance. In such a
case, increasing the number of processors does not result in an increase
of computational efficiency.

2.2.8 Mesh generation

In order to investigate the flow through a realistic pore geometry, one
has to transform it into a proper finite element mesh. The first stage of
this process is performing an X-ray computed tomography scanning of
an actual porous sample. This experiment results in a spatial X-ray ab-
sorption profile of the sample. Based on the absorption contrast between
a fluid and a solid one can infer the location of pores and grains with
an error depending on the scanner resolution and create a 3D binary
image of the sample (see Fig. 2.8a) (Dunsmuir et al., 1991). The next step
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Figure 2.8: (a) Voxelized representation of a Fontainebleau sandstone sample obtained
by thresholding the corresponding X-Ray CT data. Blue voxels denote solid space, brown
ones denote pore space. Each voxel is a cube with the edges of 7.5 µm. The overall
size of the sample is 1.5 mm in each direction. (b) FE-2 mesh reconstructed from the
voxelized data. The outer surface contains 763 thousand of triangles. The surface interior
is filled with 3.3 million of tetrahedral elements (not shown).

is construction of a watertight isosurface (see Fig. 2.8b), which isolates
the region of interest, i.e. pores from grains. Finally, the interior of the
isosurface is filled with volumetric elements and this provides the FE

mesh.
There are numerous algorithms for isosurface extraction, with the stan-

dard approach being the so-called marching cubes algorithm (Lorensen
and Cline, 1987). However, this method is of limited applicability for
our particular problem. First, it produces topologically inconsistent non-
manifold surfaces. A two-manifold surface has a property that a small
enough sphere around any point belonging to it will be divided into
two parts that lie on the opposite sides of the surface. Non-manifold
surfaces do not share this property, which in our case means that their
volumetric interior is not continuous everywhere. Fig. 2.9 demonstrates
the difference between a two-manifold and a non-manifold surface in
2D. A surface in Fig. 2.9b contains one node where the non-manifoldness
occurs – a sphere of any radius centred at this node will be divided in
more than two parts.

Another limitation of the marching cubes algorithm is that it produces
surfaces with an excessively large amount of triangles, which can pose an
obstacle for subsequent data processing by a volumetric mesher. In this
work we use two different software packages to study the implications of
a mesh construction step. The first one is the proprietary Mimics® soft-
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(a) (b)

Figure 2.9: 2D representation of (a) two-manifold and (b) non-manifold surfaces. Surface
meshes correspond to an idealized pore channel, the colour gradient marks solid
boundaries.

ware by Materialise, which is a complete package with various algorithms
to translate raw data from X-ray CT scans into a format suitable for finite
element meshing. Mimics® provides its own implementation of a modi-
fied marching cubes algorithm, which is guaranteed to produce manifold
meshes with a smaller degree of fragmentation. It also has a mesh op-
timization functionality to improve the isosurface quality in terms of
the aspect ratio of its triangles. The second is a 3D mesh generation
module from the open source CGAL library (Rineau et al., 2010). It avoids
the isosurface stage and constructs the tetrahedral elements complex
directly from the voxelized data, allowing for almost entirely automated
mesh generation. The CGAL mesh generator constructs a 3D triangulation
according to the restricted Delaunay triangulation paradigm. It offers
a control over the quality of the tetrahedral elements in the generated
meshes through the upper bound of the elements’ linear size and over
the geometrical conformity of the mesh boundary to the part of the CT
data identified as pore space.

The efficiency and low memory requirements of CGAL complement
our general approach of using the best available methods for the pore-
scale modelling of fluid flow and solute transport. Its ability to directly
mesh the CT images is invaluable for our purpose. Moreover, being
an open-source C++ library, it can, in principle, be incorporated into
our CSMP++ codebase and enable us to implement the adaptive grid
refinement based on a posteriori error estimation as well as local domain
remeshing when the boundary motion are accounted for.
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Smoothed isosurface

Initial isosurface

Figure 2.10: A simplified 2D representation of an initial rough isosurface (black) of
a pore and an isosurface after smoothing (red). The amount of detail in a smoothed
isosurface is significantly reduced but the resulting pore diameter is wider leading to
an overestimation of the average permeability.

2.3 method application

We will now demonstrate the application of our numerical procedure to
investigate the flow properties and emerging transport characteristics in
a 3D Fontainebleau sample. Fontainebleau sandstones are characterized
by a very narrow distribution of grain sizes with an average grain having
a diameter of 250 microns. Their homogeneity makes these sandstones
particularly suited for measuring the pore space geometry using X-ray
computed tomography.

2.3.1 Reconstructed 3D meshes

Fig. 2.8 demonstrates the application of a mesh generation workflow
to a Fontainebleau sandstone sample. The sample has the dimensions
of 1.5× 1.5× 1.5 mm3, a permeability of 1.19×10

-12 m2 and a porosity
of 13.5% (Jiang, 2008). The CT scanner resolution is 7.5 µm, therefore
the resulting 3D image of the sample has the size of 200 voxels in all 3

directions.
The mesh generated with CGAL library contains 3.1 million tetrahedra

and 932 thousand nodes. The calculated porosity of this FE mesh is
13.2%, which is slightly lower because CGAL mesher discards the regions
of isolated pore space. We will refer to this mesh as FE-1. For this work
the upper boundary for the tetrahedra size was set to 1.5 voxels and the
spatial deviation between the mesh boundary and the CT data boundary
was limited by 0.2 voxels.
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Figure 2.11: (a) Fluid pressure and (b) velocity distributions along the porous sample,
obtained from the solution of the Stokes equations. Velocity is represented as streamlines.

The isosurface from Mimics® contains 474k triangles and 236k vertices.
The surface was consequently processed using the ANSYS ICEM CFD®

software to generate the volumetric mesh, representing the pores, with
3.3 million tetrahedra and 763k nodes. This mesh will be referred to
as FE-2. The calculated porosity of the FE-2 is 17%. This discrepancy
can be explained by the isosurface extraction process which used an
option that reduces experimental noise but at the same time increases
the diameter of the pores slightly (see Fig. 2.10). However, due to limited
access to the Mimics® software, we were not able to modify the mesh once
this difference has been found. Moreover, we use this mismatch as an
instructive example of the sensitivity of pore-scale fluid flow predictions
to the tiny changes of pore geometry.

2.3.2 Pressure and velocity profiles

For calculating the velocity distribution, a pressure gradient of 1 Pa was
applied across the sample in the x direction. The fluid had a uniform
viscosity of 10

-3 Pa·s. No-slip conditions were assigned to the grain
boundaries, as well as the the domain boundaries parallel to the x axis.
The mesh was partitioned into 16 subdomains. The computing facility,
used to run the calculation, was the Heriot-Watt University Cluster, which
consists of 40 AMD Opteron 875 nodes, each supplied with 4 GB of RAM.
Every computing node can run up to 4 jobs simultaneously. The peak
memory requirement for our simulation was 6.5 GB. Hence we had to run
the simulations in parallel, although they could be performed on a 64-bit
desktop PC with 8 GB RAM equally well. Since the Heriot-Watt Cluster
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only allows for non-dedicated simulations, i.e. it is not possible to reserve
entire CPU nodes and their RAM for a simulation, we used 16 processors
to ensure that we always have sufficient memory available. The required
CPU time was 2 minutes to solve the linear problem (2.13) with 3 million
degrees of freedom. The scaling behaviour of SAMGp (Coumou et al.,
2008; Krechel and Stüben, 2001) suggests that the CPU time will increase
linearly with the decrease in processors, i.e. approximately 4 minutes will
be needed to solve the linear problem with 8 processors etc. This is still
significantly faster compared to the LB method because we do not need
to solve a transient problem.

The results for pressure and velocity distribution within the pore space
are shown on Fig. 2.11. Velocity is represented along the streamlines
emerging from the inlet boundary. Streamlines effectively represent the
preferential flow paths of an imaginary tracer, transported by the fluid.
They can be subsequently used as an alternative method of the solute
transport simulation (Mostaghimi et al., 2010). These paths do not cover
the whole pore space, as the intricacy of pore geometry inevitably leads
to some pores being stagnant, i.e. no flow occurs in them. Another conse-
quence of the pore space structure is that the flow with the maximum
velocity magnitude takes place not inside the narrowest throats, which is
the case, for instance, in a steady flow through a single tube of variable
radius. Instead the fluid favors wider and less resistant throats. In order
to demonstrate these effects more clearly, Fig. 2.12 presents a complemen-
tary 2D velocity distribution, which corresponds to a photomicrograph
of a grainstone sample with the dimensions of 10× 6 mm2.

Based on velocity distribution, one can estimate the resulting perme-
ability of the sample by integrating the velocity vector over the outflow
boundary Γout

k =
µL
∫

u · n dΓout
A(pout − pin)

, (2.32)

where

A area of the sample cross-section normal to the flow, [m2]

L sample length, [m]

pin/out pressure values at the inflow/outflow boundaries, [Pa]

These calculations yield a permeability value of 0.71×10
-12 m2 for FE-

1 mesh and 3×10
-12 m2 for FE-2 mesh. Since these values differ by a

factor of 4, we also ran a LB simulation on the voxelized representation
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(a)

(b)

Figure 2.12: (a) Grainstone photomicrograph and (b) a fluid velocity distribution across
a corresponding 2D mesh. Region 1 represents a stagnant area where velocity is low.
Region 2 demonstrates the development of a preferential flow path.

of the same sample using the SHIFT scheme (Ma et al., 2010) and the
same lateral boundary conditions. A relaxation time was taken equal to
unity, which makes the permeability to be least affected by viscosity (Pan
et al., 2006). The resulting LB permeability is 0.66×10

-12 m2, which is very
close to a result obtained with the FE-1 mesh. Permeability values are
summarized in Table 2.1. For the sake of time comparison, LB calculation
of permeability took about an hour to converge. This result allows us to
make two conclusions.

First, the discrepancy between numerical values and an experimental
permeability of 1.19×10

-12 m2 is not inherent to the FE modelling ap-
proach, but is rather a consequence of a limited sample size. Indeed, as
demonstrated by Jiang (2008), the representative elementary volume (REV)
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size for this particular sample is VREV = 6.8 mm3, while we had access to
a portion of data with a volume of VREV = 3.38 mm3. Since the sample is
smaller than the REV scale, a no-slip boundary condition on the lateral
sides of the domain that introduces an additional drag may further re-
duce the permeability value, as demonstrated by Gerbaux et al. (2009).
Finally, as shown by Jiang (2008), who studies the same sandstone sample,
when a domain exceeding the REV size is taken, the LB method yields a
permeability of 1.28×10

-12 m2, a result much closer to an experimental
value.

Second, the permeability mismatch demonstrates that isosurface recon-
struction step has to be treated with care. Though an isosurface generation
can be seen as an attempt to restore the geometry information from the
jagged voxelized CT data, it is a post-processing procedure and can in-
troduce geometrical errors. In our case the noise reduction procedure of
Mimics® effectively reduced the CT resolution while CGAL isosurface was
a by-product of the 3D mesh generation and as such was conformal to the
CT data with a minimal degree of smoothing. It should be noted that the
voxelized X-ray CT data is already an approximate representation of the
original pore geometry and the accuracy of the computed permeability
will not only depend on the accuracy of the numerical method but also
on the quality of the CT data, the segmentation and smoothing algorithms
and other factors.

2.3.3 Solute transport

The modeled single-phase velocity distribution can be used to calculate
the hydrodynamic dispersivity of the porous sample, which describes the
effective parameter to model solute transport of the macro, i.e. continuum,

source permeability value (m2)

Experimental 1.19×10
-12

FE-1 model 0.71×10
-12

FE-2 model 3.0×10
-12

LB model 0.66×10
-12

Table 2.1: Permeability values obtained experimentally and from different numerical
models.
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scale. Dispersivity in porous media results from the interplay of Brownian
motion of the solute molecules, i.e. molecular diffusion, and the velocity
differences among different streamlines, i.e. mechanical dispersion. In
this section we will demonstrate how our model can capture the effects
of this interplay consistently with the experimental findings (Fried and
Combarnous, 1971).

In order to estimate the sample dispersivity, we first solve the ADE,
using the procedure outlined in section Section 2.2.5. From this we obtain
a spatial distribution of a solute concentration C(x, t) at each time step.
We can therefore calculate the average breakthrough concentration C(t)
by integrating C(x, t) across the outflow boundary Γout, weighted with a
local flux value

C(t) =

∫
C(x, t)u(x)dΓout∫

u(x)dΓout
. (2.33)

We then find the least-squares fit of the Ogata-Banks analytical solution
of a 1D advection-diffusion equation (Ogata and Banks, 1962) to the
resulting breakthrough curve

COB(t) =
Co

2

[
erfc

(
L−Ut√
4Dt

)
+ exp

(
LU

D

)
erfc

(
L+Ut√
4Dt

)]
, (2.34)

where

Co fixed inflow concentration, [mol/l]

U mean flow velocity, [m/s]

D (longitudinal) hydrodynamic dispersivity, [m2/s]

The above-mentioned interplay between convection and molecular
diffusion is expressed in terms of a throat Peclet number Pe = Ua/Dm,
where a is a characteristic length of the sample. In this particular case
we took a equivalent to a mean Fontainebleau sandstone grain size of
250 microns. Low Peclet numbers correspond to the diffusion-dominated
flow regime, while high ones are characteristic of convection-dominated
regime. Experimental studies (Fried and Combarnous, 1971) suggest that
in the first regime dispersivity decreases with velocity, if all other param-
eters are equal. In the latter regime it increases slowly with velocity. By
changing the imposed pressure gradient and the molecular diffusivity we
can verify this dependency between the Peclet number and an upscaled
sample dispersivity.
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Figure 2.13: Flux-weighted breakthrough curves, corresponding to Peclet numbers
Pe = 0.18 (a) and Pe = 55 (b). High Peclet numbers characterize a convection-dominated
regime in which case long tailing occurs. That is, the concentration takes a longer time
to reach the maximum value than predicted by the analytical solution.
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Fig. 2.13 demonstrates two breakthrough curves that correspond to the
diffusive (Pe = 0.18) and convective (Pe = 55) flow regimes, respectively.
Though both curves are well approximated by an analytical solution
(2.34), a close inspection of the second (Pe = 55) curve reveals that
the concentration does not reach its maximum inflow level within the
time span of the modelling. As indicated by Salles et al. (1993), the
size necessary for a breakthrough curve to have no tailing, is linearly
proportional to the Peclet number. When the solute diffuses away from
the major flow paths it becomes trapped or delayed within stagnant zones
(Haggerty and Gorelick, 1995). If the solute diffusivity is low (i.e. Peclet
number is high), it takes a significant amount of time for the solute to
diffuse back to high-velocity streamlines and hence causes the tailing
effect. In case of higher (molecular) diffusivity, e.g. thermal diffusion, this
heterogeneity effect becomes less dominant and the tailing is reduced.
This essentially determines the REV size of a sample for the transport
modelling. Salles et al. (1993) suggests that no tailing will occur when the
sample’s linear size L is larger than

L > 10 Pe · a. (2.35)

Therefore, the sample whose size is sufficient for determining the perme-
ability value may be too small for the solute transport calculations.

Fig. 2.14a shows the calculated FE-1 and FE-2 samples’ dispersivities
for a wide range of throat Peclet numbers. It should be noted that in
both cases we used the same average grain size value a for calculating
the Peclet number which is justified by the fact that the relative differ-
ence of this parameter between FE-1 and FE-2 is close to one. The results
are plotted in a dimensionless fashion as log10(D/Ua) versus log10(Pe)
(Acharya et al., 2007; Bijeljic et al., 2004; Fried and Combarnous, 1971;
Sorbie and Clifford, 1991). This way points corresponding to different
values of molecular diffusivity collapse onto a single curve. The overall
form of this curve for the FE-2 mesh compares very well with the ex-
perimental results (Fried and Combarnous, 1971), which demonstrates
that our code captures this well-known emergent behavior. At values
of Pe < 1, the curve has a negative slope because dispersion is almost
constant in the diffusion-dominated regime. A minimum in the value
of D/Ua is predicted in the range 1 < Pe < 10 which is also found ex-
perimentally (Fried and Combarnous, 1971). For Pe > 10 the slope turns

50



2.3 method application

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

0

0.2

0.4

log10 Pe

lo
g 1
0
D
/
U
a

FE-1
FE-2

(a)

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

log10 Pe

lo
g 1
0
D
/
D
m

FE-1
FE-2

(b)

Figure 2.14: (a) Dispersivity versus throat Peclet number Pe = Ua/Dm plotted in a
dimensionless fashion as D/Ua. The shape of the curve reflects the transition from the
diffusion- to convection-dominated regime of the fluid flow. (b) Dispersivity versus
throat Peclet number Pe = Ua/Dm plotted as D/Dm. Two curves correspond to
conformant (FE-1) and slightly inflated (FE-2) meshes.
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positive corresponding to the regime where mechanical dispersion is
prevalent but where molecular diffusion cannot be ignored. At Pe values
greater than ∼ 1000 the slope approaches zero. This is where dispersion is
purely mechanical and D is, theoretically, linear to U (Brenner, 1980). The
observed decline at Pe > 103 occurs because the tailing of breakthrough
curves leads to a poorer fit of numerical calculations against Eq. (2.34)
and hence a deviation of D/Ua from the expected behavior. It should also
be noted, that points on Fig. 2.14 were calculated by varying both velocity
and molecular diffusivity to verify the consistency of the dimensionless
plot, i.e. that the cases corresponding to different diffusivities but same
Peclet number result in the same value of D/Ua. The results for the FE-1
sample demonstrate the correct behaviour in the low and intermediate
Pe ranges, albeit with the higher levels of dispersivity at the same values
of Pe as compared to the FE-2 mesh. However, for high Peclet numbers
the behaviour of dispersivity is drastically different from that for the FE-2
sample. This is discussed below.

The curve in Fig. 2.14a emphasizes the transition between three differ-
ent flow regimes. Another way to plot the transport modelling results
is in the log10(D/Dm) versus log10(Pe) scale, which allows easier quan-
titative comparison with other works dealing with the porous media
dispersion. This plot is presented in Fig. 2.14b for both FE-1 and FE-2
meshes. Fig. 2.14b agrees well in terms of dispersivity magnitude with the
results on longitudinal dispersion compiled by Bijeljic et al. (2004). At low
Peclet numbers diffusion drives the solute propagation and therefore the
effective dispersivity is lower then molecular diffusivity (log10(D/Dm)
is negative) as the pore space restricts the solute movement. The slope
of the curve in this region gradually approaches zero as the very low Pe

dispersivity depends only on formation resistivity factor and porosity
(Sahimi and Islam, 1995). Again, at the mixed-flow regime convection-
diffusion interplay is the most pronounced and hence the curve has a
slope higher than unity.

Both figures demonstrate a difference in the transport properties be-
tween the two meshes. For the FE-1 sample we observed that at around
Pe > 200 the breakthrough curves shows a strong non-Gaussian behavior
with long tailing and that they can no longer be approximated with the
Ogata-Banks solution. This is in agreement with the above-mentioned
discussion on non-Gaussian dispersion behavior by Salles et al. (1993)
and shows that the sample size is far below the transport REV scale at
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Pe > 200. We believe that the drastic difference in the dispersivity be-
haviour originates due the fact that the FE-1 sample has narrower pore
throats than the FE-2 sample, and hence contains more streamlines that do
not reach the outflow boundary. In the case of small diffusivity (i.e. high
Pe) when a solute particle starts moving along a dead-end streamline
there is a low probability of it reaching the other side of a sample and
therefore outflow concentration rises very gradually. Another possible
source of such a discrepancy is the fact that the FE-1 is characterized by a
rougher grain surface (see Fig. 2.10) with a very low fluid velocity inside
the surface kinks. If a solute particle is brought into these low-velocity
regions, it again has low probability of returning back to the flow. All in
all, this is an open question that requires further research but it is outside
the scope of the present work.

As a result of this, the behaviour of the dispersivity D in Fig. 2.14a
does not reflect the experimental findings and is not linearly proportional
to the mean velocity U. In Fig. 2.14b the difference between FE-1 and
FE-2 again manifests itself in the dispersivity magnitudes and also the
power law coefficient δ between D/Dm and Pe (a slope in the logarithmic
scale). The results are δ = 1.23 for FE-1 and δ = 1.1 for FE-2 for the
10 < Pe < 200 region. This further illustrates the sensitivity of pore-scale
modelling results to the proper construction of the numerical domain.
The power law coefficient describes the influence of diffusion from the
low-velocity boundary layers on the overall sample dispersivity. The
widening of pore channels in FE-2 mesh reduced the rate of this diffusion
and thus resulted in a lower value of δ. Other studies on numerically
reconstructed Fontainebleau sandstones report the power law coefficient
of δ = 1.34− 1.56 (Salles et al., 1993). However, a subsequent work by
Yao et al. (1997) demonstrated that the numerical approach employed for
estimating the sample dispersivities in (Salles et al., 1993) and Yao et al.
(1997) yielded a consistently higher power law coefficient as compared to
the experimental measurements. For the sake of comparison, published
experimental results on power law coefficient in Berea sandstones range
from δ = 1.13 (Gist et al., 1990) to δ = 1.33 (Kinzel and Hill, 1989), which
suggests that both values computed in this work are physically quite
reasonable. Finally, it is worth indicating that in most publications on
the dispersivity simulations the results are published in the log10(D/Dm)
versus log10(Pe) scale. Our results demonstrate that even when the results
look reasonable in this scale, care should be taken as they can still be
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unphysical in the sense that the transition between various flow regimes
is not captured properly due to the sample size limitations.

One important application of the procedure described here is an analy-
sis of the relation between the molecular diffusivity of a solute in bulk
water Dm and the diffusivity of the same solute in saturated porous
media Dpm in the absence of advection. This relation is crucial in the
performance assessment of underground disposal systems for the ra-
dioactive waste. The average macroscopic diffusion coefficient is defined
as (Skagius and Neretnieks, 1986)

Dpm = φδ/τ2 ×Dm, (2.36)

where

φ diffusion-accessible porosity, [–]

δ constrictivity, [–]

τ tortuosity, [–]

Porosity and constrictivity can be determined from the geometrical
structure of the porous sample, while tortuosity can be obtained by calcu-
lating the stationary velocity profile and the corresponding streamlines
(Matyka et al., 2008). The average diffusion coefficient can be computed
by tracking the spatial evolution of the solute concentration within the
sample when no advection occurs. Hence the validity and the range of
applicability of the aforementioned relation can be studied.

2.4 summary

In this chapter we presented a direct pore-scale procedure for modelling
the single-phase fluid flow and transport in reconstructed 3D porous
medium. The key elements of this procedure are:

1. a FE solution of the stationary Stokes equation on unstructured
meshes for an accurate representation of domain geometry;

2. an algebraic multigrid method for solving the resulting FE linear
problem, which offers a linear number-of-operations scalability with
respect to mesh refinement and hence significantly mitigates the
computer resources limitation factor;

3. an optional domain decomposition for problem parallelization;
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2.4 summary

4. a combined FE-FV technique for solving the transient inert transport
problem.

The main novelty of our approach to modelling the pore-scale physics
is the implementation of numerical methods that are best suited for our
purpose. By utilizing an unstructured mesher that works directly on the
CT data, stable first-order discretization schemes for the governing PDEs
and a state-of-the-art algebraic multigrid solver, we for the first time
bring the problem of direct pore-scale fluid flow and solute transport
within the reach of research groups that do not have access to computer
clusters with hundreds of computing nodes. By applying this procedure
to a reconstructed Fontainebleau sandstone sample we were able to
demonstrate that the FE solution yields the same permeability value as the
LB method while requiring a fraction of time necessary for the LB solution
to converge. We also highlighted the detrimental effect of reducing the
amount of geometrical data by means of excessive domain boundary
smoothing. This implies that given an accurate mesh of a domain it is
much more preferable to use the FE-based method of calculating the
resulting permeability than the currently more wide-spread LB approach.

Transport modelling demonstrated the correct transition between var-
ious flow regimes from diffusion- to convection-dominated and gave
quantitatively similar results when upscaled sample dispersivity was
compared to other published results. It also showed a slight decrease in
the sample dispersivity as well as in the relative contribution of diffusion
in the mixed flow regime in the case of a mesh with inflated pore throats.
Finally, we observed that a mesh reconstruction procedure determines
the onset of the breakthrough curves tailing with respect to the Peclet
number.

In the next chapter we will discuss how our pore-scale model can be
extended to include the effects of chemical reactions such as mixing and
interaction between the solute and the rock.

Results of this chapter were presented in the following peer-reviewed
publication:

• Y. Zaretskiy, S. Geiger, K. S. Sorbie, and M. Förster. Efficient flow
and transport simulations in reconstructed 3D pore geometries.
Advances in Water Resources, 33(12):1508-1516, 2010
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3.1 introduction

In Chapter 2 we considered the transport of an inert solute, where the
local solute concentration can change either due to fluid advection or as
a result of molecular diffusion. However, many real-life transport phe-
nomena also involve the chemical interaction between different species
dissolved in the fluid or between the fluid and the rock. In what follows
we will discuss how these effects can be incorporated in a numerical
simulation.

The dynamics of chemical reactions in porous media is pertinent to a
wide range of reservoir engineering problems including CO2 sequestra-
tion (Durucan and Shi, 2009), contaminant transport (Chern and Chien,
2003), chemically enhanced oil recovery (Strand et al., 2006), or mineral
scale formation during oil production (Sorbie, 2010). The associated spa-
tial and temporal evolution of reactive species within the porous rocks
is often difficult to measure across the relevant scales and hence it is
important to develop the appropriate numerical models that allow us
to quantify and upscale these phenomena. Numerical models can, for
instance, facilitate the design of an enhanced oil recovery procedure and
predict the future behavior of the system such as the distribution of
species within a porous medium.
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3.1 introduction

In modelling reactive transport, the porous medium itself can be de-
scribed with an explicit geometry, as a set of grains and voids, or it
can be treated as a continuum, characterized by average properties. The
latter approach is more efficient in terms of computational efforts and
usually implies that the evolution of chemical species is governed by the
advection-dispersion-reaction equation

φ(x, t)
∂Ci
∂t

+∇ · (u(x, t)Ci)

−∇ · (D(x, t)∇Ci) = R(C1, . . . ,Cn, x, t),
(3.1)

where

Ci concentration of the species i, [mol/l]

φ(x, t) porosity (scalar) field, [–]

u(x, t) velocity (vector) field, [m/s]

D(x, t) dispersivity (tensor) field, [m2/s]

R(C1, . . . ,Cn, x, t) generic reaction term, [mol/(l·s)]

Akin to the case of inert solutes in Chapter 2, this kind of transport
description requires knowledge of the relevant effective properties of the
medium, such as porosity, permeability, dispersivity, reactive surface area,
etc. As a result, such an approach cannot be used to describe the solute
flow a priori. Instead, empirical relations between parameters are used,
such as Kozeny-Carman relation (Carman, 1937, 1956; Kozeny, 1927),
which describes the evolution of permeability as a function of porosity. In
addition, this description assumes that the reactants are well-mixed and
does not resolve any local distribution and flow focusing effects due to
the porous medium’s microstructure. As an alternative, models with an
explicit pore geometry description do not rely on averaged macroscopic
parameters and can model the temporal and spatial localizations of
reactions at the pore scale, which can then be used to derive appropriate
effective parameters on the continuum scale.

Since it has been established experimentally that the change of brine
composition can trigger the enhanced oil recovery during waterflooding
of chalk rocks, this process clearly involves certain chemical interactions
between the brine and the porous rock. Therefore, one cannot simulate
this process without treating the transported solutes as reactive. More-
over, the process involves two fluid phases and as such an influence of
the brine composition on the oil-water interface properties cannot be ex-
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3.1 introduction

cluded either. Consequently, a complete numerical model of this problem
should couple two-phase flow and reactive solute transport components.
As indicated in the introduction of this thesis, currently no method is
available that can adequately simulate both phenomena. Furthermore,
there is no clear physical understanding of the nature of the link between
the brine composition and the two-phase flow. Therefore, in this chapter
we follow both avenues in terms of how they can be modelled within the
FE-FV framework, but, as will be seen in the next chapter, we will mainly
concentrate on simulating the single-phase chemical interaction between
the brine and the rock. The problem of existing second fluid phase is
presented only as a proof of concept and the approach to this problem
is simplified – we only show how we can account for its presence in the
form of immiscibly trapped oil blobs rather than simulating the complete
transient two-phase transport. More specifically, in this chapter

1. We present a computationally efficient approach to simulate single-
phase fluid flow and reactive solute transport at the pore scale in
porous media. We extend the inert transport model from Chapter 2

and introduce the fluid-solid interaction in the form of a non-
linear adsorption. The reaction step is decoupled from the rest of
the calculations and hence alternative chemical reactions can be
modeled in a similar fashion, either coded manually or by linking
an external chemical software package (see, for instance, PHREEQC

(Charlton and Parkhurst, 2011), GEM-Selector (Kulik et al., 2003))
with the flow solver. We do not include any chemical reactions in
our simulations that are specific to waterflooding of chalk rocks
as we devote the next chapter to identifying exactly what these
reactions are.

2. In addition to the generic description of reactive transport mod-
elling, we describe a method of determining the pore size distribu-
tion within an unstructured numerical domain, based on calculating
a distance map of a domain. The presented technique in itself is a
first reported extension of the method of maximal inscribed spheres
proposed by Silin and Patzek (2006) to the unstructured FE meshes.
As such it can, in principle, be used to simulate the capillary pres-
sure curves directly from the CT data. In the context of two-phase
pore-scale reactive transport modelling, it does not offer a way to
model the dynamics of the oil phase, but it offers means to account
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3.2 numerical method

Figure 3.1: Relation between a 2D finite element mesh (dashed), a node-centred finite
volume mesh (solid), nodal surface (red line), and nodal volume (orange area). Black
and blue colors are used to distinguish between the fluid and grain parts of the domain
(see also Fig. 2.3).

for its presence. Therefore, provided that we know what chemical
conditions trigger the wettability change, it allows us to use pore-
scale modelling to analyse whether these conditions occur, where
they occur and how they are influenced by the flow of the aqueous
phase.

3. Finally, we briefly demonstrate how our distance-based method
can be used to place the oil blobs in the pores based on the rock
wettability and to subsequently model the reactive solute transport
within the aqueous phase, including the micron-scale water films
that may surround the oil blobs. The model is rather simple as it
accounts for a single solute that can adsorb onto the water-rock
surface. Oil-water and oil-rock interactions are not considered. Even
with an simple model we highlight an issue that the high affinity of
a solute towards the rock surface may limit the solute’s propagation
towards the oil/water/rock contact lines and reduce the effective-
ness of a potential EOR technique. However, more elaborate analysis
requires the exact knowledge of the chemical effects that determine
the oil/water/rock interaction.

3.2 numerical method

The main difference between modelling inert (see Chapter 2) and reactive
transport phenomena, as far as meshing is concerned, is that in the latter
case we store additional information about the grains boundaries in the
form of a triangulated surface aligned along the grains (red region in
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3.2 numerical method

Fig. 3.1). This surface mesh allows for easier calculation of the surface area
associated with every boundary node and, more importantly, it provides
means for modelling additional surface effects, namely diffusion along
the surface films formed by the wetting fluid. This is accomplished by
assigning a nominal thickness to the triangular elements and including
them in the diffusion step of the transport calculation (see Eq. 2.25).
This capability is important in modelling the scenario in which the pore
is occupied by a non-wetting fluid, but the grains are coated with the
wetting fluid surface films at the micron scale. Fig. 3.1 demonstrates the
relation between various mesh components.

3.2.1 Chemical reactions

As mentioned earlier, we model the interaction between the fluid and
the solid grains by introducing the non-linear adsorption of the solute.
The adsorption is incorporated by Godunov operator splitting method as
an equilibrating stage that follows every transport time step, which is a
direct extension of how the inert transport calculations are implemented.
Namely, we start with the advection-diffusion-reaction equation (we omit
the optional dependency (x, t) of various parameters on the spatial and
temporal coordinates for the sake of brevity)

∂C

∂t
= ∇ · (Dm∇C) −∇ · (uC) +

(
∂C

∂t

)
reaction

, (3.2)

subject to the boundary conditions (2.24). The effect of the first two terms
on the right-hand side of Eq. 3.2 is calculated with exactly the same
procedure as described in Section 2.2.5. The third term denotes a generic
reaction term whose exact form depends on the reactions considered in
the model. For the non-linear adsorption, it assumes the form(

∂C

∂t

)
reaction

= k1Γ − k2C · (Γmax − Γ). (3.3)

Here Γmax/Γ is a (maximum) surface concentration [moles/m2], and
k1,2 are the desorption/adsorption rates, with the units of [m2/(l·s)]
and [m2/(mol·s)]. Since Eq. 3.3 contains no gradients, it only needs
to be integrated in time. Moreover, if the equilibrium assumption is
considered, then we only need to obtain the steady-state solution of
Eq. 3.3 by equating its left-hand side to zero. In addition to this, we have
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3.2 numerical method

to enforce the mass conservation law between the volumetric and the
surface concentrations of the solute. Hence we arrive at the following
system of equations that has to be solved at every node located on the
grain surface 

Γ = Γmax
βC

1+βC
,

C0Vi + Γ0Si = CVi + ΓSi.
(3.4)

Here the first equation is a Langmuir adsorption isotherm and the second
one is a mass conservation law, where the “0” subscript denotes initial
concentration levels. Langmuir isotherm is derived under assumption
that the adsorption sites do not influence each other and as such it does
not account for the overall charge of the adsorbing surface. This system is
solved after every transport time step because it disturbs the fluid-solid
equilibrium. The following notations are used

β = k2/k1 equilibrium constant for adsorption, [l/mol]

Si area of an ith boundary node, [m2]

Vi volume of an ith boundary node, [m3]

An algorithm for calculating the nodal volume and surface values
is demonstrated in Fig. 3.1: it consists of summing up the volumetric
contributions of the adjacent FV segments, marked with index k, of the
highest (3D or 2D) and the second highest (2D or 1D) dimensions of a
given model,

Vi =
∑
k

Vk , Si =
∑
k

Sk. (3.5)

As noted before, more complex chemical reactions, such as mixing
of multiple species within the fluid or mineral precipitation, can be
modeled using the same approach by replacing the solution of Eq. (3.4)
with a specific chemical solver. A particular example of such a solver is
PHREEQC (Charlton and Parkhurst, 2011). It is a geochemical software
capable of simulating a wide range of equilibrium reactions between
water and minerals, ion exchangers, surface complexes, solid solutions,
and gases. It contains an internal scripting language, which allows for a
general formulation of kinetic reactions such as nonequilibrium mineral
dissolution and precipitation. PHREEQC’s functionality as a chemical
solver will be covered in more detail in the next chapter. For this section
it is important to note that PHREEQC can be run not only as a stand-alone
software but also as a C++ class (called IPhreeqc) from any in-house
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3.2 numerical method

fluid flow and transport code. An input method of IPhreeqc expects local
concentrations, a time step (for kinetic reactions), a nodal area (for surface
reactions) and a mass of water (linearly proportional to a nodal volume)
as its arguments. An output method can return new concentrations values
thus concluding the calculations for a single time step.

3.2.2 Distance field calculation

The described reactive transport model can be used to address questions
associated with the chemically enhanced oil recovery in porous media,
for instance low-salinity water flooding (Lager et al., 2008). To do this, we
have to introduce the concept of a second immiscible phase. Since our 3D
meshes consist of millions of elements, methods that are usually used to
extend the Navier-Stokes equation to the case of multiple phases (level-
set, volume-of-fluid, phase field methods, see, for instance, Unverdi and
Tryggvason (1992)) would require a prohibitive amount of computations.
To avoid them, we propose the use of a simple quasi-static rule-based
approach.

We assume that for a non-wetting fluid (e.g. water in an oil-wet rock)
to invade any given pore, i.e. a drainage process, it has to overcome the
capillary pressure exerted on a spherical bubble inscribed inside that
pore. In other words, we approximate an interface between two fluid
phases as having a spherical shape. The capillary pressure is related to
the curvature radii R1 and R2 of an interface through the Young-Laplace
equation (Collins and Cooke, 1959)

Pc = σ(1/R1 + 1/R2). (3.6)

In case of a spherical interface two radii are equal (R1 = R2 = R) and the
capillary pressure is inversely proportional to the sphere radius R. The
effect of a non-zero wetting angle θw can in principle be included with a
cos θw term, resulting in a local capillary pressure of Pc = 2σ cos θw/R.

It should also be noted that, since we are working with the irregular
pore geometries with no distinct pore entities (as opposed to, for instance,
pore networks), we define radii for every point of a pore domain. A point
radius is a radius of a sphere of a maximum size that is inscribed in the
pore space and covers that particular point. This remark on the maximum
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size of a sphere is important because a point can be covered by more
than one inscribed sphere.

Assuming for the moment the radius of every point is known, the pro-
cedure for modelling the invasion process is the following. First, a radius
value for every point belonging to the sample inlet (which currently is an
oil-water interface) is analysed. Starting from zero, an entry pressure is
increased in small increments until it exceeds the Pc = 2σ/Rmax, where
Rmax is a maximum radius among all the inlet points. Then all the points
with the radius R > Rmax that are connected to the initial entry point with
R = Rmax become invaded. The condition R > Rmax can hold because it
is checked for all points that are connected through the defending wet-
ting fluid to the entry point, while the Rmax value was determined only
among the points that belong to the inlet surface. Moreover, the points
can become invaded only if they are additionally connected to the outlet
through the wetting phase, i.e. there is a path for the defending fluid to
escape the pore sample. Once all locations for invasion are identified,
the procedure is repeated again but this time it starts not only with the
(non-invaded) points that belong to the inlet but also with the points that
belong to the newly formed oil-water interface.

Therefore, the full invasion-percolation scenario is simulated during
this procedure. This procedure can also be applied to an imbibition pro-
cess, e.g. water flooding of a water-wet system initially filled with oil, by
considering increasing radii of spheres of the defending non-wetting fluid.
However, this approach, as implemented in this thesis, only accounts
for the bulk fluid connectivity and not for the connectivity through the
surface films, i.e. no film flow is assumed. Also, only piston-like fluid
displacement is simulated and snap-off effects are not considered. The
described algorithm is similar to the one presented by Silin and Patzek
(2006) but it is extended to work on unstructured meshes.

This procedure is of an approximate character for several reasons.
First, the interface between two fluids does not necessarily assume a
spherical shape. Second, the quasi-static approach is only valid when
capillary forces dominate viscous forces, i.e. only for slow flow rates that
are usually characterized by capillary numbers NCa = µv

σ (Lake, 1989)
of less than 10

-4 (µ is viscosity of the wetting fluid, v is characteristic
velocity, σ is interfacial tension). The approach is strictly valid only for
the strongly wetting case, for example the fully oil-wet system. Finally, as
indicated above, certain physical effects intrinsic to fluid displacement are
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not accounted for. Nevertheless, this approach should properly predict
the order in which pores are invaded and also demonstrate the change in
residual oil in case interfacial tension is locally reduced.

The pore radii for an irregular pore geometry are calculated by first
computing the pore space distance field, i.e. the distance to the nearest
boundary for every node in the mesh. There are different ways of calcu-
lating the distance field, but most of them are geometrical algorithms that
can only be applied to regular finite difference meshes (Sethian, 1999).
In order to find the distance field of an arbitrary unstructured mesh,
such as the one shown on Fig. 2.8, one has to solve a PDE to which the
distance field would be a solution. There are two potential candidates for
this task. One is the Poisson equation which gives an approximate result
but presents no complications for finding its numerical solution (Fares
and Schröder, 2002). An alternative is called the Eikonal equation which
defines the exact distance field but is strongly non-linear and requires
special numerical treatment (Tucker et al., 2005). Here we will consider
both solutions.

The first approach is based on the following assumption. If a particle
is placed at an inner node of the computational domain and allowed
to perform a random walk until it hits the domain boundary then the
average time it takes for this particle to reach the boundary should
be proportional to the distance from the particle’s initial position to
this boundary. Mathematically, this average time T can be computed by
solving the following Poisson equation

∇2T = −1, x ∈ Ω;

T = 0, x ∈ ∂ΩDir;
∂T
∂n = 0, x ∈ ∂ΩNeu.

(3.7)

where Ω denotes the computational domain. The Dirichlet conditions
(Dir) are prescribed on the walls where the distance is calculated from,
Neumann conditions (Neu) are assigned otherwise. The random walk
model is expressed in this equation as a diffusion process with the unit
diffusivity constant. Once the equation is solved the distance field d(x)
(with the units if [m]) is computed as

d(x) =
√
∇T(x) · ∇T(x) + 2T(x) − |∇T(x)|. (3.8)
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This relation is exact only when the boundary is flat and forms no
angular features. Otherwise some deviations will occur. Fig. 3.2 demon-
strates an application of this procedure in 2D. The domain used is a 6×6

square, hence the maximum distance value is reached at its centre and
equals 3. The Poisson equation is obtained with a first-order FE method
on a triangular mesh, similar to how the diffusion equation was solved
in Eq. 2.26. Nodal gradients of φ are estimated by first calculating the
piecewise constant element gradients and then extrapolating those values,
weighed by the element area, back onto the nodes. For a triangular FE

grid the weighting factor is 1/3. In the first numerical case, Dirichlet con-
ditions are imposed on the upper and lower boundaries, with Neumann
conditions on the left and right sides, i.e. the angle between different
portions of the Dirichlet boundary is still zero. In the second case distance
field from all 4 sides of the square is calculated, forming four right angles
in a Dirichlet boundary. Fig. 3.3 shows the distance field values plotted
along the vertical axis of symmetry of the square. As expected, as long
as the Dirichlet conditions are prescribed on flat boundaries, the Pois-
son equation yields the correct answer (Fig. 3.3a). When the boundary
includes angular features (Fig. 3.3b) this approach is valid only in its
vicinity. The reason for this is that the d(x) value becomes influenced
by more than one linear segment of the domain boundary, which is a
consequence of the ellipticity of the Poisson equation. Depending on the
application in mind, this might be sufficient. However, we require the
distance field to be true everywhere.

A straightforward remedy for such a problem would be to replace
the diffusion process with the wave propagation. Indeed, if one sends
a spherical wave from a given point and calculates the time it takes for
it to reach the boundary, the result would be determined solely by the
closest distance to the boundary, no matter what spatial configuration
that boundary assumes. As in the previous case, the point-wise wave
propagation time can be determined by solving a certain PDE called the
Eikonal equation. The Eikonal solution is an exact domain distance field
d(x), and the equation is written as

|∇d(x)| = 1, x ∈ Ω;

d = 0, x ∈ ∂ΩDir;
∂d
∂n = 0, x ∈ ∂ΩNeu.

(3.9)
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(a)

(b)

(c)

Figure 3.2: Distance field computed as a solution of various numerical cases: (a) Poisson
equation with Dirichlet boundary conditions prescribed on the top and bottom sides of
the domain. (b) Poisson equation with Dirichlet conditions prescribed on all four sides.
(c) Eikonal equation with Dirichlet conditions prescribed on all four sides. Diagonal
strokes mark Dirichlet boundaries.
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(a)

(b)

Figure 3.3: Distance field plotted along the vertical axis of symmetry of the domain from
Fig. 3.2. The Poisson equation yields correct distance field as long as Dirichlet boundary
has no angular features. Otherwise the numerical solution deviates from the analytical
one away from the boundary, as the distance field becomes affected by more than one
Dirichlet segment. Eikonal solution is exact everywhere except for a slight deviation at
the domain centre where a shock-like feature is formed.
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Figure 3.4: Solutions of Eikonal equation on a 1D domain Ω = [0; 1]. The solid line
corresponds to the true distance field, while the dashed line describes the sawtooth-like
shape of any alternative solution of Eq. 3.9.

The boundary conditions for this equation are the same as in the
previous case. It can be easily seen that the solution of this equation is
not unique, due to an absolute value operator. As an illustration of this,
Fig. 3.4 demonstrates two different solutions of the Eikonal equation on a
1D domain Ω = [0; 1]. It is important to follow a procedure that will allow
us to obtain the true distance field solution. A fundamental requirement
that the sought-for solution has to satisfy is that its derivative can change
sign only at the inner regions that send waves touching two or more
boundary points at the same time. Otherwise this solution should linearly
increase from boundaries towards the domain central points. One can
think of it as a transient process where solution is propagated from the
boundaries towards the inner parts of the domain. This deduction will
serve as a basis of a mathematical procedure that we employ for solving
the Eikonal equation. It is similar to the one described by Xia and Tucker
(2010). As a first step, we define the following pseudo-velocity vector

U = min
‖·‖

{
∇d,

∇d
‖∇d‖

}
. (3.10)
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We then multiply the first equation from (3.9) by itself and add a
pseudo-time τ derivative on its left-hand side. Combining both steps, we
arrive at the following system of partial differential equations

U = min
‖·‖

{
∇d,

∇d
‖∇d‖

}
,

∂d

∂τ
+ U · ∇d = 1⇐⇒ ∂d

∂τ
+∇(Ud) = 1+ d∇U.

(3.11)

The second part here is akin to an advection-diffusion equation, for
which we have to calculate its steady state solution. The reason for choos-
ing the pseudo-velocity as defined in (3.10) is to not let the information
about the distance propagate faster than in the steady-state case. If one
starts from fixed zero values at the boundary and zero initial values
inside the domain, then, due to the source term in (3.11), the solution
inside will gradually increase until it converges to a correct steady-state
value. However, unlike Eq. (2.23), in this case numerical experiments
show that we cannot decouple “advection” and “diffusion” parts and the
whole system has to be solved using the FV method. The corresponding
discrete FV formulation of this system with explicit time discretization is

Uτ = ∇dτe,

dτ+∆τi = dτi −∆τ

 1

Vi

∑
j

(nj ·Uτ
j ) (d

τ
j − d

τ
i )Aj − 1

 .
(3.12)

Here the gradient of the distance field is re-calculated every time step in
an element-wise constant fashion using the gradients of the finite-element
basis functions, thus updating the pseudo-velocity field. When inserted
into the second equation of (3.12), velocity values are clipped to a length
of less or equal than unity to improve the method’s stability. Additionally,
a simple first order upwinding scheme is not sufficient to calculate the
distance values at the finite-volume segments. Instead, time marching of
Eqs. (3.12) in τ was found to converge when the following scheme was
used

dτj = d
τ
upw +∇dτupw · (xj − xupw), (3.13)
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3.2 numerical method

Algorithm 3.1: Conversion of distance field into inscribed radii field
data: Distance field d(x) – nodal variable
result: Radii field R(x) – elementwise constant variable

foreach node i do

Ω← ∅ // empty list of elements
xi ← coordinate of i
Dval ← di(x)
foreach parent element j of i do

xj ← barycentre of j
if ‖xi − xj‖ 6 Dval then

append j to Ω
end

end

foreach element p ∈ Ω do

foreach neighbour q of p do

xq ← barycentre of q
if ‖xi − xq‖ 6 Dval and q 6∈ Ω then

append q to Ω
end

end

end

foreach element p ∈ Ω do

Rp(x)← Dval
end

end

with the nodal gradients extrapolated from the surrounding element
gradients using a distance to an element’s barycentre as a weight

∇di =

∑
e∇de

/
|xi − xe|∑

e 1
/
|xi − xe|

. (3.14)

Here the subscript upw denotes an upwind node and x is used to refer
to a radius vector. A radius vector of a FV segment is taken equal to a
radius vector of its barycentre.

Fig. 3.2c demonstrates the improvement of a solution obtained by
Eikonal equation compared to the one obtained by the Poisson equation.
The resulting distance field is almost exact. Fig. 3.3 reveals that the only
slight deviation (1.1%) occurs at the domain centre which is the only point
influenced by all four boundary segments. A shock-like feature occurs
here and it can be correctly resolved by either locally refining the mesh
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or using higher-order numerical schemes. Incidentally, this shock-like
feature is a part of the medial axis of our square domain. A medial axis
of a domain is a closure of a set of centres of all spheres (or circles in
2D) that touch the domain boundary at not less than two points. Fig. 3.3
indicates that the medial axis is characterized by a negative jump of the
first derivative of d(x), which in turn means that its second derivative,
or more precisely its Laplacian, equals minus infinity, ∇2d(x) = −∞.
This offers an alternative way of determining the medial axis position as
compared to purely geometrical methods.

Once the time marching has converged to a steady state, the resulting
distance field can be easily converted into the radii field. The radius
for a given point is taken to be the maximum distance value among all
the points located within the distance value of a current point. Within
the finite element framework, this procedure can be described with the
pseudocode in Algorithm 3.1.

As mentioned above, the separate treatment of the grain boundaries in
our numerical approach allows us to simulate the solute transport along
the surface films that coat the grains. Physically these films are formed
due to the roughness of the grain surfaces that is not captured by the
resolution level at which the porous geometry has been digitized. On the
other hand, for the acute geometry features that are larger than the sample
resolution (i.e. the voxel size) the formation of the wetting fluid films
is an emergent property because the acute features are characterized by
small radii values and hence the high capillary pressure level is required
to remove the wetting fluid from them. We call these regions of the
immobile wetting fluid the “bulk layers” to distinguish them from the
sub-resolution surface films.

Finally, Fig. 3.5 demonstrates the distance field and the corresponding
radii field for a triangular 2D mesh obtained from a grainstone micropho-
tograph (see Fig. 2.12). Fig. 3.6 shows a corresponding snapshot of a
phase distribution at a particular level of the entry pressure during an
invasion-percolation scenario, where a non-wetting fluid enters the do-
main at the left side. It also shows the above-mentioned bulk wetting
layers in the concave features of the grains.
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Figure 3.5: (a) Distance field to the nearest pore wall for a 2D grainstone thin section
(see also Fig. 2.12). (b) The corresponding radii field.
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3.3 example application

Figure 3.6: Snapshot of a 2D phase distribution at a particular level of the entry pres-
sure during an invasion-percolation scenario. Dark red colour represents the invading
non-wetting fluid and blue colour marks the initial wetting fluid. Green arrows show ex-
amples of the bulk wetting layers that cannot be removed because they lost connectivity
to the outlet.

3.3 example application

The ultimate application that we have in mind for our pore-scale model is
simulating the reactions that govern wettability change in carbonate rocks.
As described in Chapter 1, it is thought that the wettability alteration
reactions involve solute adsorption onto the rock surface adjacent to oil,
as well as possible change in pore geometry due to dissolution. Therefore,
in this chapter we present a model of the transport of a generic solute
with affinity towards the rock surface in a pore space partially occupied
by oil. Specific chemical reactions will be considered in the next chapter.

To demonstrate the application of our numerical methods we used
the Fontainebleau sandstone sample presented in the previous chapter,
converted into a finite element tetrahedral mesh. Initial modelling steps
are the same as in the inert transport case described in the previous
chapter: calculating FE Stokes solution using domain decomposition and
AMG method for an ensuing linear system. The computed velocity profile
was supplied to an advection-diffusion equation and the evolution of
the solute concentration was calculated. Fig. 3.7a depicts an example of
the spatial distribution of a solute within the porous sample at a certain

73



3.3 example application

Figure 3.7: (a) Snapshot of the spatial distribution of the solute concentration within the
pore space. The prescribed concentration at the inlet is chosen as 10 for convenience
and does not represent a physical volumetric concentration level. (b) The corresponding
surface concentration when adsorption is present. The red color denotes levels exceeding
half of the maximum allowed surface concentration. A narrow range of the colorbar
is chosen to clearly distinguish between the values above and below this threshold (of
4·10

-5).

moment in time. The case of inert solute transport was then compared
to a situation when adsorption was present. Fig. 3.7b shows the spatial
distribution of the adsorbed solute within the 3D sample. The surface is
marked with a different color when the concentration level exceeds half
of the maximum allowed surface concentration; this makes it easier to
estimate the extent of the affected surface. One can see that the solute
is preferably adsorbed along the major flow pathways, dominated by
advection (closer to the outlet), and then propagates towards the more
stagnant pores due to diffusion (closer to the inlet).

It is well-known that adsorption mechanism results in the breakthrough
curves being retarded as compared to the transport of an inert solute
(Pope, 1978). Fig. 3.8a shows the comparison between these two cases and
it can be seen that same concentration levels appear later when adsorption
is present. Since we associate an areal value with every boundary node
of our finite element mesh, we can accurately measure the evolution of
the surface affected by our chemical agent. For instance, if we assume
that local wettability changes occur after a certain surface concentration
threshold has been reached, we can measure the percentage of surface
where these changes have developed. Fig. 3.8b shows such a plot with
five different threshold values α that are represented as a portion of the
maximum surface concentration Γmax. The first four curves correspond to
regions of the Langmuir isotherm where the slope is steep and therefore
a solute is more readily transferred from the fluid to the rock surface.

74



3.3 example application

Pe = 55

Figure 3.8: (a) Flux-weighted breakthrough curves for cases with and without adsorption.
Presence of adsorption introduces the retardation of an outflow solute concentration.
(b) Evolution of surface covered with concentration values exceeding certain percentage
α of the maximum allowed value Γmax and plotted as a percentage of the overall grain
surface.
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Figure 3.9: (a) A distribution of the solute concentration together with the oil blobs
(shown in dark green). The domain is clipped in a way to show an area surrounding one
of the blobs. (b) Close-up of a region denoted by red circle on fig. 3.9a. The green zone
represents the oil blob cross section. Note that despite the presence of the sub-resolution
surface films, the grain surface area surrounding the blob has negligible concentration
levels. (c) Auxiliary 2D images of a solute distribution near a pore occupied by oil, also
depicted in green. On the left image the solute adsorption is high and the solute cannot
propagate towards the centre of the pore. On the right picture the adsorption is low and
hence the solute can diffuse along the grain surface.

Since the slope of the adsorption isotherm is almost constant for these
four curves, the gap between them is small and does not increase with
α. As Γ approaches the maximum value, a surface becomes saturated
with a solute and more time is required to further increase the surface
concentration (the slope of the adsorption isotherm approaches zero).
Hence the curve corresponding to α = 1 assumes a slightly distant
position.

Finally, we show how our reactive transport model can be used to
estimate the potential of the enhanced oil recovery procedures. To do so,
we first calculate the capillary pressure distribution based on the distance
map. Here we consider the scenario in which the water-wet rock has
already been flooded with water and retains the residual oil in the form
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of the trapped blobs, i.e. no invasion-percolation scenario is simulated.
We assume that these blobs would occupy the medium to large pores
since they are characterized by the lowest capillary pressure values. We
can determine the location of the largest pores by calculating the distance
field of the 3D pore space. In our particular case, the largest pores have
a linear size of 80 µm and we placed the trapped oil inside the pores
larger than 50 µm. However, it is known that in reality the configuration
of the oil blobs is a non-trivial function of the wettability and saturation
history (Landry et al., 2011) and can span several pores. Nevertheless, our
simplified approach can, to a first approximation, measure the effect that
the presence of oil blobs has on the breakthrough curves and adsorption.
We restricted our velocity and transport calculation to the remaining pore
space, including the surface elements surrounding the oil, to which a
thickness of 0.1 µm has been assigned. If the solute concentration level
at the grain surface adjacent to the trapped oil reaches a certain level,
this could result in a local wettability change and the release of that oil
droplet.

Similar approach can be applied to the oil-wet scenario. In this case
the oil blobs will occupy smaller pores. As described by Hammond and
Unsal (2009), in order for a surface-active agent to access the rock surface
of an oil-wet rock, it has to diffuse towards the rock surface, adsorb near
the water-oil-rock contact and diffuse along the surface behind the oil
meniscus. These processes can be readily simulated using our pore-scale
model.

Fig. 3.9a shows a clipped distribution of the solute concentration, which
surrounds an oil blob, while Fig. 3.9b shows a close-up of a pore occupied
by the trapped oil. Due to the diffusion process, the solute can propagate
towards the centre of the blob along surface films. The extent of this
propagation is determined by the grain surface reactivity, expressed
by Γmax parameter of the adsorption isotherm, and by the thickness of
surface films. In this example the solute propagation stopped at the oil
boundary because the Γmax is too high for the solute to move any further.
this effect is further elucidated in Fig. 3.9c, that shows two auxiliary 2D
images of a solute distribution near a pore occupied by oil. On the left
image the solute adsorption is high and the solute cannot propagate
towards the centre of the pore. On the right picture the adsorption is low
and hence the solute can diffuse along the surface films. This implies
that if the chemical species is too easily adsorbed to the rock surface
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Figure 3.10: Flux-weighted breakthrough curves for the transport cases with (red) and
without (blue) the presence of oil, and with both oil blobs and sorbing grain surfaces
(brown). Oil residing in the largest pores leads to a very long tailing of the effluent
solute concentration. Comparing this figure with Fig. 3.8a reveals that the presence of
oil blobs results in a stronger solute retardation due to adsorption.

during the EOR procedure, it will not be able to facilitate the release of
trapped oil. It is therefore important to consider the time scales associated
with different chemical reactions as well as advection and diffusion. This
importance will be further emphasized in the next chapter of the thesis.

Fig. 3.10 presents a comparison between three breakthrough curves –
that of an inert solute, of an inert solute when the oil is present and of an
adsorbing solute when the oil is present. It can be clearly seen that the
effective dispersivity of the sample is significantly increased when the
largest pores are inaccessible for the solute and therefore it is transported
along the otherwise less preferable flow pathways. This results in a
pronounced tailing of the breakthrough curve, or in other words the flow
Peclet number is significantly increased. It is also interesting to compare
Fig. 3.10 and Fig. 3.8a. It can be seen that the presence of oil in the
largest pores results in a stronger solute retardation due to adsorption as
compared to the case with unoccluded pores.
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3.4 summary

In this chapter we presented a computational method for the direct
pore-scale simulation of the reactive solute transport. The method uses
the FE technique to calculate the fluid velocity field and the combined
FE-FV method to compute the solute concentration profile. Using the
grid-based methods allows us to preserve the accurate information of
the pore space structure, which can be crucial for modelling the fluid-
rock chemical interactions. Chemical reactions are decoupled from the
transport calculations which allows us to link any stand-alone chemical
solver to our simulator.

We applied the procedure to a reconstructed Fontainebleau sandstone
sample and showed the retardation behavior of the averaged break-
through curves in the presence of the solute adsorption on the grain
walls. We then showed how calculating the distance map of the pore
space can be combined together with the solute transport computation to
model the possible mechanism for the enhanced model recovery when
part of the pore space is occupied by a second immiscibly trapped fluid
phase. We showed that even in such a simple model the interaction
between the transport and the chemical reactions is non-trivial, i.e. the
competition between diffusion and adsorption can prevent the solute
from being dispatched to the oil/water/rock contact line. In reality the
affinity of an ion towards the surface is influenced among other things
by the surface charge (the effect which is not captured by the Langmuir
adsorption isotherm employed in this Chapter) which in turn depends
on the ionic composition of the brine. This may be one of the reasons for
the sensitivity of the oil recovery to the ionic composition of the brine.

Finally, the major advantage of using the FE-FV method for the fluid
flow simulations is its capability to simulate the transport phenomena
along the 2D surfaces within a 3D domain. Due to this capability it
is possible to formally include the sub-resolution surface films at the
rock surface without modifying the mesh itself, as well as to model
the solute diffusion along the oil-water or oil-rock interfaces, which are
suggested to be the crucial mechanisms for dispatching the wettability
altering agents to the oil-rock interface (Hammond and Unsal, 2009). We
see this as a compelling reason to choose the FE-FV method over other
alternatives to simulate the pore-scale reactive transport phenomena
relevant to wettability alteration. To the best of our knowledge, no study
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has been published to this date that deals with the pore-scale numerical
investigation of how the chemical agents are actually dispatched to the
oil-wet surfaces.

While the presented numerical methods are adequate for simulating
the scenarios where the oil phase is immobile and the samples are com-
pletely oil-wet, their extension to the altering wettability effects and the
transient motion of both fluid phases is non-trivial. Two possible avenues
can be pursued to this effect. First, one can utilize the available two-phase
extensions of the Navier-Stokes equation, such as the phase field or level-
set methods, to solve the fully transient flow equations with the arbitrary
wettability conditions. For instance, the level-set based approach reported
by Prodanovic and Bryant (2006) is somewhat similar to what was de-
scribed in this Chapter, but the use of the level-set method produces
the correctly shaped non-spherical interfaces; also it does not solve the
Navier-Stokes equations, i.e. the fluids are still assumed to be quasi-static.
To this date, no research has been published on the application of the
fully transient two-phase Navier-Stokes extensions to the problems of
the pore-scale flows in realistic 3D geometries. A second way forward
is to use the above described methods to condition the pore-network
models, where the governing equations are simplified and the transient
motion of fluid interfaces is avoided. This approach to simulating the
reactive two-phase flow problems is an extension of the work presented
by Hammond and Unsal (2012), where a simple analytical solution for a
single pore throat was used to condition the pore network model, to the
cases where no analytical solutions are available.

It should also be noted that in this work the 3D simulations were
conducted on the mesh that corresponds to a fairly regular sandstone
sample. The pore geometry of a carbonate rock is inherently much more
complex due to the existence of multi-scale porosity types. Although our
meshing procedure should apply equally well to a voxelized image of a
carbonate rock, it is the omission of (sub-resolution) geometrical details
during the production of this voxelized image that can present additional
complexities. As indicated in the Introduction, the pore-scale coupling of
flow effects at different scales of porosity in carbonates is a topic of the
ongoing research.

To summarize, the tools that we presented in Chapters 2 and 3 laid
the groundwork for the simulation of the pore-scale propagation of the
reactive solutes and their chemical interaction with both the oil phase and
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the rock. Hence, it is first necessary to identify what chemical interactions
do occur in reality by analyzing the experimental data.

To this end, in the next chapter we will examine the experimental
evidence of the chemical interaction between seawater and chalk as it is
considered relevant to enhanced oil recovery in this type of rocks. We will
then construct a numerical model that incorporates different chemical
mechanisms in an attempt to elucidate which of these mechanisms can
explain the experimental measurements.

Results of this chapter were presented in the following peer-reviewed
publication:

• Y. Zaretskiy, S. Geiger, and K. S. Sorbie. Direct numerical simulation
of pore-scale reactive transport: applications to wettability alteration
during two-phase flow. International Journal of Oil, Gas and Coal
Technology, in press.
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4.1 introduction

In the previous chapters we described the construction of a pore-scale
simulator for both inert and reactive solute transport. In order to apply
it to an actual problem of interest, i.e. wettability alteration in carbonate
rocks, we should first determine what chemical reactions govern the fluid-
rock interactions. As discussed in Chapter 1, there is some unambiguity
in this question. One way to elucidate it is to use the numerical modelling
as an explanation tool for the pertinent experimental measurements.
To this end, we will review the previously published laboratory data
on certain single-phase coreflooding experiments in carbonate rocks
with seawater-like brines and construct a numerical model where we
have a choice of what chemical effects to incorporate. Currently proposed
governing effects include divalent ions adsorption and the mineral phases
dissolution and precipitation. Therefore, we use the modelling approach
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to determine whether the inclusion of either or both of theses effects is necessary
to reproduce the experimentally observed evolution of the effluent composition of
the injected brines. In contrast to the previous chapters, here we employ a
continuum-scale reactive transport modelling approach. This is because
the data that we analyse, i.e. effluent breakthrough curves, is available
at the continuum-scale and hence for the purpose of matching it the use
of average porous medium representation is sufficient. Also, since we
do not account for any heterogeneities within the porous samples we
describe the solute transport as a 1D process.

We begin by presenting the published experimental data on seawater-
chalk chemical interaction. We then describe how the 1D reactive trans-
port problem is solved using the PHREEQC software. We describe various
chemical effects that are included in our numerical model and what
equations describe these effects. We then use the model to successfully
simulate the described laboratory measurements. We finish with the dis-
cussion of what implications our results have for similar chemical effects
two-phase flows.

4.2 review of published experimental data

The first set of relevant coreflood experiments for our purposes was
summarized by Strand et al. (2006). Outcrop chalk from Stevns Klint,
Denmark, was used as a core material. It is characterized by low per-
meability of 2–5 mD, high porosity of 45–50% and a specific surface
area of 2 m2/g (Hiemenz and Rajagopalan, 1997). The core length was
approximately 7 cm and the pore volume was about 44 ml.

Strand et al. (2006) looked at how SO2–
4

and Ca2+ influenced each
others’ interaction with the rock. For a given temperature a core sample
was first flooded with three pore volumes of seawater with no sulphate,
denoted SWss (sans sulphate) in Table 4.1. After that the injected fluid was
changed to seawater with sulphate and an inert tracer (SWtr) or to seawater
with sulphate and an adjusted level of dissolved calcium (SW

1/2ca, SWca,
SW2ca, where a number in the subscripts denotes a Ca2+/SO2–

4
ratio).

Experiments were conducted at five different temperature levels (in ◦C):
23, 40, 70, 100 and 130. All fluids were injected at a constant flow rate
of 0.2 ml/min. Compositions of the brines from Strand et al. (2006) that
are used in the subsequent modelling are listed in Table 4.1. Note that,
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compared to data reported by Strand et al. (2006), the inert tracer in
Table 4.1 was replaced by an additional amount of Cl- to simplify the
input for the numerical model. Some brines are excluded from the table
as their corresponding breakthrough curves illustrate the same trends as
the ones from Table 4.1 and hence these brines will not be included in the
simulation. Key experimental results of Strand et al. (2006) are presented
in Figures 4.1-4.2.

The main observations from there results are:

1. Fig. 4.1a: the level of sulphate rises above zero after just more than
1 PV of brine is injected. This implies that the flow of SO2–

4
ions is

retarded within the rock and the retardation effect increases with
temperature.

2. Fig. 4.1b: when SO2–
4

ions are present in the brine, a loss of Ca2+

occurs. Also, there is an indication of calcium production in the
beginning of the flood as the relative calcium concentration starts
above one.

3. Fig. 4.2: sulphate retardation increases with temperature and ratio
of Ca2+/SO2–

4
.

The second set of experiments we will consider was reported by Zhang
et al. (2007). In this work Stevns Klint chalk was again used as a core
material, characterized by the same length of 7 cm and a slightly smaller
pore volume of about 29 ml.

Emphasis of the work of Zhang et al. (2007) was on comparing the
interactions of Ca2+ and Mg2+ with the rock at different temperatures.

ions [mol/l] SWss SWtr SW
1/2ca SWca SW2ca

C(4) 0.002 0.002 0.002 0.002 0.002

Cl- 0.623 0.549 0.524 0.525 0.526

SO2–
4

– 0.024 0.024 0.024 0.024

Mg2+
0.0445 0.0445 0.0445 0.0445 0.0445

Ca2+
0.013 0.013 0.0065 0.013 0.026

Na+
0.5 0.45 0.462 0.45 0.425

K+
0.01 0.034 0.01 0.01 0.01

Table 4.1: Ionic compositions of brines used for coreflood experiments by Strand et al.
(2006).
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Figure 4.1: Experimentally measured (a) SO2–
4

and (b) Ca2+ breakthrough curves for
23 and 130

◦C reproduced from the work by Strand et al. (2006). Concentrations are
normalized with respect to their value in the injected brine. Experimental procedure
consisted of injecting 3 PVs of SWss, followed by 3 PVs of SWtr.
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Figure 4.2: Experimentally measured SO2–
4

breakthrough curves for (a) 23 and (b) 130
◦C

and varied Ca2+/SO2–
4

ratios reproduced from the work by Strand et al. (2006). Concen-
trations are normalized with respect to their value in the injected brine. Experimental
procedure consisted of injecting 3 PVs of SWss, followed by 3 PVs of either SW

1/2ca, SWca
or SW2ca, where a number in the subscripts denotes a Ca2+/SO2–

4
ratio.
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To achieve this, a core was first saturated with a 0.573 M NaCl solution
(denoted ZP brine in Table 4.2), followed by injection of CF-M brine at a
flow rate of 0.2 ml/min for 2 (at 23

◦C) or 3 PV (at 130
◦C). CF-M is a

seawater-like brine with no sulphate and equal amounts of calcium and
magnesium. Another type of experiment reported by Zhang et al. (2007)
involved saturating the core with seawater (SW) and then flooding it
with SW for 4 PVs at a rate of 1 PV/day (0.02 ml/min) and temperatures
ranging between 23 and 130

◦C. Table 4.2 lists compositions of the utilized
brines. Experimental breakthrough curves reported by Zhang et al. (2007)
are presented in Fig. 4.3 and Fig. 4.4.

The observed evolution of Ca2+ and Mg2+ concentration levels demon-
strates the following:

1. Fig. 4.3a: Calcium ions at 23
◦C were more retarded than magnesium

ones.

2. Fig. 4.3b: At 130
◦C magnesium ions arrived later than calcium,

indicating the possible substitution of Mg2+ for Ca2+ on the rock
surface.

3. Fig. 4.4: At a lower injection rate and at lower temperatures of 23

and 70 (not shown) ◦C effluent Ca2+ concentration was the same
as in the brine. At higher temperatures of 100 (not shown) and
130

◦C effluent Ca2+ concentration was persistently elevated above
its original level. The figure shows the results that will be used in
the subsequent simulations. The omitted 70

◦C curve essentially
coincide with the measurements performed at 23

◦C, results for
100

◦C reach a plateau at the relative concentration of 1.2.

ions [mol/l] sw zp cf-m

C(4) 0.002 – –
Cl- 0.525 0.573 0.569

SO2–
4

0.024 – –
Mg2+

0.0445 – 0.013

Ca2+
0.013 – 0.013

Na+
0.45 0.573 0.504

K+
0.01 – 0.013

Table 4.2: Ionic compositions of brines used for coreflood experiments by Zhang et al.
(2007)
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Figure 4.3: Experimentally measured Ca2+ and Mg2+ breakthrough curves for (a) 23

and (b) 130
◦C reproduced from the work by Zhang et al. (2007). Concentrations are

normalized with respect to their value in the injected brine. Experimental procedure
consisted of saturating the core with a NaCl solution, followed by injecting 2 or 3 PVs
of CF-M brine.
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Figure 4.4: Experimentally measured Ca2+ breakthrough curves for 23 and 130
◦C

reproduced from the work by Zhang et al. (2007). Concentrations are normalized
with respect to their value in the injected brine. Experimental procedure consisted of
saturating the core with seawater, followed by injecting 4 PVs of the same brine.

The final set of experiments we discuss in this section was reported
by Madland et al. (2011). In this work chalk cores were obtained from
the quarries of Lixhe near Liège, Belgium. Liège chalk is characterized by
porosity of 40-43% and permeability of 1–2 mD. The pore volume of all
cores was approximately 33 ml.

A key objective of the work of Madland et al. (2011) was to investigate
whether chemical interaction between the fluid and the rock occurs
when brines with simpler chemical compositions are used. The main
emphasis was on studying the rock compaction effects but effluent ionic
concentration levels were also analysed. All experiments were conducted
at 130

◦C and at a constant flow rate of 1 PV/day. Here we consider two
flood experiments from that publication, as all other floods demonstrated
the same effects. Cores were initially saturated with distilled water. Two
brines were used in the presented flood experiments: a MgCl2 solution
(MC) and seawater (SW). Their compositions are listed in Table 4.3. MC

brine has been injected for 2 weeks while SW has been injected for
three days. After three days the sample was occluded due to mineral
precipitation. Experimental breakthrough curves reported by Madland
et al. (2011) are presented in Fig. 4.5.

Following conclusions can be inferred from the these results:
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Figure 4.5: Experimentally measured breakthrough curves for (a) MgCl2 and (b) seawater
brines injected into chalk cores reproduced from the work by Madland et al. (2011).
Concentrations are reported in mol/l. Experimental procedure consisted of saturating
the core with distilled water, followed by injecting 14 or 3 PVs of the corresponding
brine.
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1. Fig. 4.5a: during the injection of MC brine sustainable loss of Mg2+

and equal production of Ca2+ were observed throughout the whole
duration of the experiment. No loss of Cl- occurred. Moreover, after
an initial surge, the production of Ca2+ gradually decreased until
about 12 PVs of the brine had been injected.

2. Fig. 4.5b: during the injection of SW brine the production of Ca2+

was less then the loss of Mg2+ and an additional loss of SO2–
4

ions
occured.

4.2.1 Remarks on the published data

It is argued by Strand et al. (2006) and Zhang et al. (2007) that the chem-
ical interaction between seawater-like brines and chalk rocks occurs in
the form of adsorption processes, i.e. surface reactions. Namely, SO2–

4

adsorbs onto the rock surface and reduces the positive charge of the chalk.
This facilitates the co-adsorption of Ca2+ and, at higher temperatures,
the substitution of Mg2+ for Ca2+. Experiments of Madland et al. (2011)
demonstrate that: (1) the presence of sulphate ions is not necessary for
this substitution to occur; (2) this process can be maintained for many
pore volumes. The latter fact implies that the process is more likely to be
volumetric in nature, i.e. dissolution/precipitation rather than adsorption.
To support this conjecture, we can estimate the total production of cal-
cium during the experiments and compare it to the number of available
adsorption sites Nσ. A waterflood with MgCl2 solution, reported by Mad-
land et al. (2011), stopped when 453.4 ml (14 PVs) of fluid were injected.

ions [mol/l] mc sw

C(4) – 0.002

Cl- 0.438 0.525

SO2–
4

– 0.024

Mg2+
0.219 0.0445

Ca2+ – 0.013

Na+ – 0.45

K+ – 0.01

Table 4.3: Ionic compositions of brines used for coreflood experiments by Madland et al.
(2011)
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Throughout the experiment the average effluent concentration of calcium
was about 0.035 M. This gives a total of 453 · 0.035/1000 = 1.6 · 10−2 mol
of Ca2+. According to Madland et al. (2011), Nσ = 1.9 · 10−3 mol, which is
an order of magnitude less. Moreover, as indicated in the previous chap-
ter, the adsorption preferentially occurs along the high-velocity pathways
and hence even less surface sites would be involved in Ca2+ desorption
when the brine is injected in the sample.

Nevertheless, Ca2+ dissolution and anhydrite precipitation do not take
place at room temperature and hence a retardation of SO2–

4
observed by

Strand et al. (2006) and Ca2+ and Mg2+ observed by Zhang et al. (2007)
should probably be ascribed to adsorption. Consequently, based on the
initial evidence we formulate the following hypothesis subject to the
subsequent verification – in order to reproduce the observed experimental
phenomena in a numerical model, it has to incorporate both surface adsorption
and volumetric dissolution/precipitation effects. This will be discussed in the
next section.

4.3 numerical model

The model is constructed using PHREEQC (Charlton and Parkhurst, 2011),
which is a geochemical modelling programme capable of simulating a
wide range of chemical reactions (e.g. aqueous equilibrium, adsorption,
kinetic mineral dissolution and precipitation) as well as 1D advection-
dispersion-reaction transport, governed by Eq. 3.1. It uses an explicit
finite difference scheme to solve the transport part, which is central in
space for dispersion and upwind for advection. Chemical equilibrium is
calculated using mass-action equations. The Newton-Raphson method
with an optimization suggested by Barrodale and Roberts (1980) is used
to solve the resulting system of non-linear equations. Kinetic reactions are
integrated in time using the CVODE algorithm (Cohen and Hindmarsh,
1996). In the following sections we will concentrate on the chemical
reactions we incorporate in our PHREEQC model.

4.3.1 Aqueous chemistry

As a first step, we include chemical reactions in the liquid phase. The
dissolved species in the aqueous phase are assumed to be in thermo-
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dynamic equilibrium. This equilibrium requires that at every transport
node the mass-action equations for all possible association reactions be-
tween the master species are satisfied. Master species are those species
for which the transport equation is solved. The following master species
are considered in our model: H+, Ca2+, CO2–

3
, H

2
O, Na+, Cl–, Mg2+, SO2–

4
,

K+. The resulting association reactions between these species and the
corresponding mass-action equations are as follows (master species are
on the left hand side of the reactions)

H2O
 H+ + OH-, Kaqw =
{H+}{OH-}

{H2O}
,

CO2-
3
+ H+ 
 HCO-

3
, K

aq
1 =

{HCO-
3
}

{CO2-
3
}{H+}

,

CO2-
3
+ 2H+ 
 CO2 + H2O, K

aq
2 =

{CO2}{H2O}

{CO2-
3
}{H+}2

, (4.1)

SO2-
4
+ H+ 
 HSO-

4
, K

aq
3 =

{HSO-
4
}

{SO2-
4
}{H+}

.

Here {·} denotes the dimensionless activity ai of a specific species; Kaqw ,
K
aq
1 , Kaq2 , and Kaq3 are equilibrium constants for the corresponding aque-

ous reactions. Notice that the activity of water is explicitly included as it
does not necessarily equal unity in PHREEQC. CO2 in the above equations
denotes CO2 dissolved in the water rather than the gaseous phase. It
should also be noted that it is argued by Strand et al. (2006) and Zhang
et al. (2007) that the association between Mg2+ and SO2–

4
ions should take

place at higher temperatures. However, SO2–
4

breakthrough curves do not
reflect a decrease in sulphate due to this reaction. Hence it was excluded
from the model.

The activity ai is related to molality mi [mol/kgw] as ai = γimi/m
	
i ,

where m	i is the molality at the standard conditions and γi is the di-
mensionless activity coefficient, calculated in PHREEQC with the Davies
equation

log10 γi = −Az2i

( √
I0

1+
√
I0

− 0.3I0

)
, (4.2)

where zi is the dimensionless ionic charge of aqueous species i, A is
a temperature-dependent constant and I0 is the ionic strength of the
solution [mol/kgw]

I0 = 0.5
∑
i

miz
2
i . (4.3)
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Finally, the following aqueous charge balance equation must also hold
for the dissolved species ∑

i

mizi = 0. (4.4)

4.3.2 Surface adsorption

Akin to ion association in the aqueous phase, ions can also form com-
plexes at the solid rock surfaces which are in contact with the fluid. The
surface complexes are also assumed to be in thermodynamic equilibrium.
The basic theory of surface-complexation reactions was presented by
Dzombak and Morel (1990). It requires the following parameters to be
specified: the number of active sites Ts [sites/nm2], the specific area [As
[m2/g], and the mass of the solid Ss [g]. For every surface reaction the
model includes two additional unknowns in its mass-action equation as
compared to aqueous reactions: (1) the surface potential Ψs [V] and the
activity of the surface species. Therefore, the surface potential and, hence,
surface charge are explicitly calculated in this method. We consider the
surface-complexation model between the fluid and the calcite rock as
derived by Pokrovsky and Schott (2002). It assumes that >CO3H0 and
>CaOH0 are the master surface species, present in equal amount on
the carbonate surface. We specify Ts = 2 sites/nm2 for both >CO3H0

and >CaOH0 (Hiorth et al., 2010a), and the specific area As = 2 m2/g
(Hiemenz and Rajagopalan, 1997). Note that both species are neutral
because they share one of the electrons. All other surface complexes can
be expressed in terms of the master species with the following reactions
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(the horizontal line separates reactions that describe the adsorption of
the relevant divalent ions)

>CO3H0 
 >CO-
3
+ H+,

>CaOH0 
 >CaO- + H+,

>CaOH0 + H+ 
 >CaOH+
2
,

>CaOH0 + CO2-
3
+ 2H+ 
 >CaHCO0

3
+ H2O, (4.5)

>CaOH0 + CO2-
3
+ H+ 
 >CaCO-

3
+ H2O,

>CO3H0 + Ca2+ 
 >CO3Ca+ + H+,

>CO3H0 + Mg2+ 
 >CO3Mg+ + H+,

>CaOH0 + SO2-
4
+ H+ 
 >CaSO-

4
+ H2O.

Here > denotes a surface species. If we consider, for instance, the last
(eighth) reaction from this system, then the following mass-action equa-
tion has to be satisfied

Ksurf8 =

usual mass-action equation︷ ︸︸ ︷
{>CaSO-

4
}{H2O}

{>CaOH0}{SO2-
4
}{H+}

×

charge interaction︷ ︸︸ ︷
exp

(
FΨs

RT
∆Z

)
, (4.6)

where, in addition to the already defined surface potential Ψs,

Ksurfi surface equilibrium constant, i = 1 . . . 8

F Faraday’s constant, F = 96485 C/mol

R ideal gas constant, R = 8.314 J/(K·mol)

T absolute temperature, K

∆Z net change in surface charge, ∆Z = -1 in this example

In PHREEQC the activity of a surface species is equal to its mole fraction
among all species that can occupy the surface site. In other words, a
surface species has activity of one when it completely covers a given
surface site. This is different from the work of Dzombak and Morel
(1990) where the activity of a surface species is assumed equal to its
concentration.

The exponential factor in the mass-action equation accounts for the
work required to move the charged ions away from the surface. It ef-
fectively reduces activities of ions with the charge of the same sign as
that of the surface; and increases activities for ions with the charge of
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the opposite sign. The surface potential is related to the surface-charge
density σs [C/m2] by the Grahame equation (Israelachvili, 2011)

σs =
√
8000εε0RTI0 sinh

(
FΨs

2RT

)
, (4.7)

where ε is the dielectric constant of water, ε0 is the permittivity of free
space, ε0 = 8.854× 10−12 C2/(m·J). σs is defined as

σs =
F

AsSs

∑
is

miszis , (4.8)

where summation is over all surface species.

4.3.3 Mineral dissolution and precipitation

Finally, we incorporate the effects of mineral dissolution and precipitation.
We consider three mineral phases: calcite (CaCO3), which is present
initially, magnesite (MgCO3), and anhydrite (CaSO4), both of which can
precipitate from the aqueous solution. At temperatures below 70

◦C
gypsum (CaSO4·2H2O) is less soluble than anhydrite, but brines from
the previous section are not oversaturated with gypsum and hence it
was discarded as a potential mineral phase. Reactions that describe
equilibrium between the solution and these phases are

CaSO4(s)
 Ca2+ + SO2-
4

, K
sp
1 = {Ca2+}{SO2-

4
},

CaCO3(s)
 Ca2+ + CO2-
3

, K
sp
2 = {Ca2+}{CO2-

3
}, (4.9)

MgCO3(s)
Mg2+ + CO2-
3

, K
sp
3 = {Mg2+}{CO2-

3
}.

Here Kspi denotes the corresponding solubility product. The time scale
associated with dissolution and precipitation is usually comparable with
(or even larger than) the pore residence time determined by solute trans-
port. Therefore, it is important to model these effects as kinetic rather
than instantaneous reactions (Steefel and Lasaga, 1994). To this end, they
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are introduced into the model as the following ordinary differential
equations

d[CaSO4(s)]
dt

= k1

(
1−

{Ca2+}{SO2-
4
}

K
sp
1

)
,

d[CaCO3(s)]
dt

= k2

(
1−

{Ca2+}{CO2-
3
}

K
sp
2

)
, (4.10)

d[MgCO3(s)]
dt

= k3

(
1−

{Mg2+}{CO2-
3
}

K
sp
3

)
.

Here [·] denotes moles of a solid phase and ki are the kinetic rate constants
of the corresponding heterogeneous reactions [mol/s]. It can be easily
seen that at equilibrium, i.e. when some of equations (4.9) are satisfied,
the right-hand side of the corresponding equation from (4.10) becomes
zero and hence no additional change in moles of the solid phase takes
place.

It should be noted that the functional form of Eqns. (4.10) is a typical
way to introduce the reaction rates when the exact experimental data
about them is lacking. Despite the fact that more detailed studies on
description of calcite precipitation and dissolution rates were presented
by Plummer et al. (1978), they cannot be directly used in our model
because of the difference in temperature and pressure conditions between
(Plummer et al., 1978) and the experiments we consider. Moreover, Yoon
et al. (2012) demonstrated that the model of Plummer et al. (1978) cannot
explain the experimental dynamics of calcite precipitation and dissolution
even for idealized porous medium. This is probably due to the fact that
the kinetic rates are measured using the finely crushed rock samples
which maximizes the available reaction surface. Therefore, we treat all the
reaction rates as fitting parameters rather then relying on the published
data.

4.4 modelling results

In what follows we will use the constructed model to simulate the exper-
iments presented in Section 4.2. This will allow us to establish whether
(and which of) the described components of the chemical model can
explain the observed experimental behaviour. There are six variables
in the model that we use as fitting parameters and our goal is to seek
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what values, when assigned to these parameters, would yield numerical
results that satisfactorily and consistently reproduce the complete set of
experimental data. Both fitting and fixed parameters will be described in
the next subsection. It should be noted that the fitting procedure in this
Section is not conducted in a least-squares sense, as in Section 2.3.3, but
rather as a manual trial-and-error process. This is due tho the fact that
there are no means available to automate the PHREEQC simulations.

4.4.1 Fixed parameters

Temperature-dependent equilibrium constants Kaqw , Kaq1 , Kaq2 , and Kaq3 for
aqueous reactions were taken from the standard PHREEQC database. Equi-
librium constants Ksurfi for surface reactions listed above the horizontal
line in Section 4.3.2 were taken from the work of Pokrovsky and Schott
(2002), where only data for 23

◦C is provided. It was found in the course
of the modelling that these reactions do not influence the behaviour of
the relevant breakthrough curves. Hence their equilibrium constants at
130

◦C were modified to reflect the behaviour of the steady-state chemical
model presented by Hiorth et al. (2010a) and no further effort was made
to adjust these values.

Temperature-dependent solubility products Kspi in the functional form
of Eq. 4.11 were obtained from the literature

log10 K = A1 +A2T +
A3
T

+A4 log10 T +
A5
T2

, (4.11)

where Ai are the fitting parameters with no particular physical meaning.
Data for magnesite was taken from the work of Bénézeth et al. (2011).
Data for calcite and anhydrite was taken from the work of Kaasa (1998),
where experimental measurements by Ellis (1959); Plummer and Busen-
berg (1982); Wolf et al. (1989) were used to fit (4.11) for CaCO

3
and

measurements by Haarberg et al. (1992) were used for CaSO
4
. Results for

all minerals are summarized in Table 4.4.
Finally, as mentioned above, reaction rates for mineral dissolution and

precipitation were also considered as fitting parameters.
Each 1D numerical grid was discretized in n = 40 cells, i.e.

∆x = L/n, (4.12)
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mineral A1 A2 A3 A4 A5

CaCO
3

1322.11 0.163337 −74008.12 −475.704 4.0908× 106

CaSO
4

5.0635 −0.020946 −970.388 – –
MgCO

3
7.267 −0.033918 −1476.604 – –

Table 4.4: Coefficients in Eq. 4.11 for the relevant thermodynamic solubility products.

where L is the core length [m]. PHREEQC uses explicit time-stepping
scheme, therefore defining the time-step simultaneously defines the ad-
vecting velocity [m/s], U = ∆x/∆t. Velocity for a given experiment can
be calculated from an injection rate Q [ml/s] and a pore volume v [ml],
U = QL/v. Hence,

∆t = v/Qn. (4.13)

PHREEQC uses operator splitting to couple advection with dispersion
and reactions, similar to how it is done in Chapters 2 and 3 of this the-
sis. Since it uses explicit time discretization, the advection time step is
automatically subdivided into several dispersion steps to minimize the
numerical errors, and for each dispersion step a further subdivision takes
place when ODEs for kinetic reactions are integrated. Sample dispersivity
D was set to 1.5× 10−9 for 23

◦C and 5× 10−9 for 130
◦C to give a satis-

factory fit across all simulations. This value corresponds to a dispersion
coefficient of α = L/100 (such that D = αU), which is within physically
justified limits (Gelhar et al., 1992).

4.4.2 Fitting parameters and numerical breakthrough curves

Six parameters are chosen as the fitting parameters: Ksurf6 , Ksurf7 , Ksurf8 ,
k1, k2, k3. Figures 4.6-4.11 show numerically computed breakthrough
curves along with the corresponding experimental data. Values of all
fitting parameters are presented in Table 4.5. The first three data columns
correspond to simulations ran at T = 23 ◦C, and the remaining ones – to
simulations at T = 130 ◦C. We reiterate that the main goal of this chapter
was not to reproduce every measurement as closely as possible, each
time adjusting the fitting parameters to obtain a perfect match. Rather
we wanted to obtain a single set of parameters that would not change
(as long as the T is constant) from one run to another and would yield a
model capable of reproducing all the measurements, thus confirming or
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refuting our hypothesis, formulated in Section 4.2.1. It can be seen that
for a given value of T the surface reaction constants are the same across
different models, and kinetic rates vary by no more than a factor of five.
A dash symbol in Table 4.5 means that a particular reaction did not occur
in a simulation, e.g. no precipitation of anhydrite or magnesite took place
at the room temperature.

As evident from Figs. 4.6-4.11, our 1D reactive transport model qual-
itatively reproduces the observed experimental evolution of the break-
through curves:

1. Fig. 4.6a: increased retardation of SO2–
4

between 23 and 130
◦C was

reproduced by increasing the equilibrium constant of the corre-
sponding surface reaction (last row in Table 4.5). These values were
adjusted to match the arrival times of SO2–

4
. Numerical curves are

characterized by higher mechanical dispersion than the experimen-
tal ones, probably because the cores used by Strand et al. (2006) had
lower dispersivity than the cores utilized in other works.

2. Fig. 4.6b: a dip in calcium was observed at both temperatures,
although the shift in the dip position is much smaller in the simu-
lations as compared to the experimental curves. Possible reasons
again include the lower sample dispersivity or a different surface
affinity towards calcium compared to other samples. At lower tem-
perature the dip is attributed solely to the change in surface affinity
towards the Ca2+ ions due to the alteration of the surface charge.
This is demonstrated in Fig. 4.7, where it is seen that the surface
potential becomes more negative once the sulphate-rich brine is
injected into the core, hence attracting more calcium. Moreover,
the Ca2+ dip at the higher temperature could only be reproduced
when an order of magnesite precipitation was set to two, i.e. the
corresponding ODE assumed the form

d[MgCO3(s)]
dt

= k3

(
1−

{Mg2+}{CO2-
3
}

K3sp

)2
. (4.14)

As indicated by Saldi et al. (2009) magnesite precipitation at temper-
atures above 100

◦C is actually described with a second order kinetic
reaction. We found that when modelling experiments with high
injection rates (approximately 10 PV/day), the data was reproduced
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Figure 4.6: Experimentally measured and modelled (a) SO2–
4

and (b) Ca2+ breakthrough
curves for 23 and 130

◦C for a chalk core flooded with SWtr brine. Concentrations are
normalized with respect to their value in the injected brine. The fluid was injected at a
rate of 6.5 PV/day.
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Figure 4.7: Evolution of surface potential along the core during the simulation of the
SWtr brine injection at 23

◦C. Blue curve corresponds to the initial potential distribution,
red curve corresponds to the injection of approximately 0.5 PV of the brine and brown
curve shows the potential distribution at the end of the simulation.

when the second order was specified for this reaction. However,
experimental data obtained at a lower injection rate of 1 PV/day
was reproduced when the order was reverted back to unity. Accord-
ing to Saldi et al. (2009), the first order of a precipitation reaction
suggests that the crystal growth is limited by the transport, which
is consistent with the fact that when the injection (i.e. transport)
was slower, the order had to be reduced.

3. Fig. 4.8: a shift of sulphate breakthrough curves with varying
Ca2+/SO2–

4
ratios was reproduced. As described in Section 4.3.2,

the activity of species involved in a surface reaction is affected by
the surface potential. Increased Ca2+/SO2–

4
ratio makes the surface

more positive as more Ca2+ is adsorbed and hence increases the
amount of adsorbed SO2–

4
, thus shifting the sulphate breakthrough

curves to the right.

4. Fig. 4.9: the equilibrium constant for the calcium adsorption is
slightly higher than that for the adsorption of magnesium. At 130

◦C
the opposite is true (rows 4 and 5 in Table 4.5) and the difference
between the constants is increased. At 23

◦C this results in the Ca2+

curve being displaced to the right compared to the Mg2+ one. At
the higher temperature the Mg2+ curve is positioned to the right of
the Ca2+ one and the calcium concentration goes above its initial
level as Ca2+ ions from the rock surface are substituted with Mg2+.
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Figure 4.8: Experimentally measured and modelled SO2–
4

breakthrough curves for (a) 23

and (b) 130
◦C and varied Ca2+/SO2–

4
ratios for a chalk core flooded with either SW

1/2ca,
SWca or SW2ca brine. Concentrations are normalized with respect to their value in the
injected brine. The fluid was injected at a rate of 6.5 PV/day.
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Figure 4.9: Experimentally measured and modelled Ca2+ and Mg2+ breakthrough curves
for (a) 23 and (b) 130

◦C for a chalk core flooded with CF-M brine. Concentrations are
normalized with respect to their value in the injected brine. The fluid was injected at a
rate of 10 PV/day.
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Figure 4.10: Experimentally measured and modelled Ca2+ breakthrough curves for 23

and 130
◦C for a chalk core flooded with seawater. Concentrations are normalized with

respect to their value in the injected brine. The fluid was injected at a rate of 1 PV/day.

It is not clear why at 130
◦C experimentally measured concentration

levels for both Ca2+ and Mg2+ rise above zero at the same time.

5. Fig. 4.10: at 23
◦C seawater is in equilibrium with calcite and no

persistent loss or production of Ca2+ ions takes place. At 130
◦C the

precipitation of MgCO
3

and the concomitant dissolution of CaCO
3

engenders the continuous production of Ca2+. The initial difference
between numerically computed and experimentally measured Ca2+

levels at 130
◦C can be probably attributed to the difference in

pH levels. Numerical levels of pH were calculated by specifying
the full ionic composition of the solutions and then satisfying the
charge conservation law 4.4. However, pH also depends on the
partial pressure of CO2 in equilibrium with the brine and this
parameter is not reported in the literature. This can result in the
discrepancy between the initial regions of the experimental and
numerical breakthrough curves.

6. Fig. 4.11a: the production of Ca2+ and loss of Mg2+ were numer-
ically observed during the slow injection of the MgCl

2
solution.

However, an initial surge of calcium and its subsequent gradual
decline along with a slow buildup of magnesium could not be repro-
duced with the constant reaction rates. As suggested by Hiorth et al.
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Figure 4.11: Experimentally measured and modelled breakthrough curves for (a) MgCl2
and (b) seawater brines injected into chalk cores. Concentrations are reported in mol/l.
The fluid was injected at a rate of 1 PV/day.
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(2010b) magnesium can inhibit the dissolution of calcite and that
the following expression should be used for a calcite dissolution
rate

k = k0
1+ k∗[MgCO

3
]

1+ k∗∗[MgCO
3
]
. (4.15)

To obtain the numerical breakthrough curves we used the above
expression with k0 = 1.5× 10−7, k∗ = 5× 103, k∗∗ = 5× 106, de-
termined by trial-and-error. At the end of the experiment there
was about 2× 10−4 moles of magnesite precipitated in every grid
cell. It can be easily verified that it corresponds to the final cal-
cite dissolution rate of k = 3× 10−10, i.e. the same value as in the
other numerical calculations. This also suggests that the rate of cal-
cite dissolution declines drastically, by three orders of magnitude,
throughout the experiment. Additionally, an observed shift between
the experimental and simulated curves is probably due to the fact
that the experimental results of Madland et al. (2011) we plotted
starting from the time when the concentration front approached the
sample’s outlet, rather than from the actual start of the experiment.

7. Fig. 4.11b: when a MgCl
2

solution was used as the injection fluid,
the sum of effluent Ca2+ and Mg2+ equalled the initial concentration
of Mg2+ because of the concomitant magnesite precipitation and
calcite dissolution. When seawater is used as the injection fluid this
is not the case anymore because the additional loss of Ca2+ due to
anhydrite precipitation takes place. An experimental occlusion of
the pore space was reported for this experiment. In our numerical
model with 40 cells each cell had a pore volume of 0.82 ml. With
the density of anhydrite being 2.97 g/ml and its molecular weight
being 136 g/mol, it requires about 0.018 moles of anhydrite to oc-
cupy the whole volume of a single cell and thus prevent the fluid
flow. However, only 2.7× 10−5 moles or 0.15% of that amount was
actually precipitated during the numerical simulation. Although
precipitation does not occur simultaneously in all pores and thus
the average continuum-scale description of this phenomena is not
appropriate, our results tentatively suggests that the sample’s oc-
clusion is unlikely to occur. On the other hand, the experimental
results shown in Fig. 4.10 (red curve) were obtained at exactly the
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same conditions but no occlusion was reported even after 4 days of
continuous flooding of the sample.

The resulting values for adsorption equilibrium constants for Ca2+ and
Mg2+ ions at the room temperature are less than what was reported by
Pokrovsky and Schott (2002). This is consistent with the fact that the
measurements of Pokrovsky and Schott (2002) were made using finely
ground rocks with a much higher adsorbing surface area. Moreover, the
measurements in that work were conducted at the atmospheric pressure,
while the simulated experiments were performed at 10-20 bar. Therefore,
we compare the values from Table 4.5 with the values reported by Hiorth
et al. (2010a). These workers used a different set of surface reactions
but they can be converted to the reactions employed in this thesis. The
following conclusions can be drawn:

• Equilibrium constants for Ca2+ and Mg2+ adsorption for 23/130
◦C

obtained in this work are 10−4.2/10−3.5 and 10−4.73/10−2.8. Calcula-
tions of Hiorth et al. (2010a) give the same values for both of these
constants, 10−3.2/10−3.1. Their results are much closer to ours for the
high temperature and differ stronger for the room temperature. This
might mean that the adsorption is weaker at the room temperature
in real experiments as opposed to thermodynamical derivations,
maybe due to stronger solvation of ions at the room temperature.

• Equilibrium constants for SO2–
4

adsorption are 1014.15/1015.5 in this
work and 1015/1012.54 in Hiorth et al. (2010a). The figures for the
room temperature are relatively close, while it is not clear why
the value of Hiorth et al. decreases with growing temperature,
which is in contradiction with the experimental results of increasing
retardation of the sulphate breakthrough curves with increasing
temperature.

Comparing our values for kinetic rates with other published results
is more complicated because authors usually publish results on specific
rates, measured in mol/(cm2·s), and our continuum-scale rates implicitly
include the rock surface available for reactions, i.e. the total rates are mea-
sured M/s. Moreover, the reaction surface does not equal the available
rock surface, but is rather a surface of the mineral crystals in contact with
water, which, for instance, is much smaller than the rock surface when a
new mineral is precipitated within the pore space. Therefore, it is only
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possible to compare the rates if they were measured in real porous rocks
with an estimated value of the reaction surface. Hence, the following
indirect comparisons with other published results were made:

• No published results on magnesite precipitation in real porous
rocks were found. A precipitation rate for anhydrite at 123

◦C in a
sandstone core was reported by Wagner et al. (2005) with the value
of 2.2× 10−9 M/s, compared to our estimated rate of 3× 10−11 M/s.
A significant difference can be attributed, among other things, to the
co-precipitation of magnesite, which can compete with anhydrite’s
precipitation.

• Calcite dissolution rates are usually studied in the context of real
seawater systems and hence results for elevated temperatures are
not presented in the literature. Calcite dissolution rate at the room
temperature is approximately 10−11 mol/(cm2·s) (Plummer et al.,
1978) and a specific surface for calcite rocks is approximately 1− 100
cm2/l (Appelo, 2005). This yields a total rate of 10−11 − 10−9 M/s,
which covers our value of about 10−10 M/s.

Perhaps the most puzzling result of our numerical modelling is the
fact that a temperature increase of more than 100

◦C resulted in at most
tenfold increase in the calcite dissolution rate. As indicated above, depen-
dency of an (initially much higher) rate on the amount of precipitated
magnesite can explain certain experimental results but it is not clear why
the same dependency is not applicable to the models corresponding to
other experiments.

Another key question is the choice of mineral phases. Results of this
section, namely Fig. 4.11, suggest that the choice of MgCO

3
was correct

because its presence allowed us to reproduce the experimentally mea-
sured equal amounts of calcium loss and magnesium production. It is
however possible that other magnesium-bearing mineral phases, such
as brucite (Mg(OH)

2
) or huntite (CaMg

3
(CO

3
)
4
), precipitate instead of or

along with magnesite. This can be clarified by experimental studies, such
as scanning electron microscopy or X-ray diffraction analysis.

Despite these issues, our results imply that the chemical interaction
between seawater and a calcite rock occurs in the form of both ion
adsorption and alteration of mineral phases. Therefore, when considering
the possible chemical cause of wettability modification it is important to
examine both phenomena.
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4.4.3 Outlook for two-phase flow problems

It is possible to extend the reactive transport model to two-phase flows.
This case is much more complex as one has to account for two additional
interactions – the water-oil interaction and the oil-rock interaction. We
consider it as a future work and in this section we will briefly describe one
possible approach to this task. We closely follow the procedure presented
by Brady and Krumhansl (2012), where a similar approach was suggested
for sandstones.

The ionic composition of a brine influences the oil-brine interface. This
can be described using the same surface complexation approach as with
the rock-brine interaction. Namely, (Brady and Krumhansl, 2012) specify
the following surface reactions

>NH+ 
 >N0 + H+,

>COOH0 
 >COO- + H+, (4.16)

>COOH0 + Ca2+ 
 >COOCa+ + H+,

where >NH+ and >COOH0 represent the dangling nitrogen base and
carboxylate groups located at the oil-water interface. By employing the
surface complexation model, we can calculate the surface charge and the
prevailing surface complexes at the oil-water interface alongside the same
calculations performed for the rock-water interface. It is then possible
to analyse the relative change in the oil-rock affinity by calculating the
concentration of “electrostatic bridges”, i.e. paired oppositely charged
species from both interfaces. The key question of this stage is which of all
possible bridges actually define a wettability state. For chalk, as proposed
by Zhang et al. (2007), these are bonds between the >COO− groups on
the oil interface and the positively charged components of chalk, i.e.
>CaOH+. Figure demonstrates the dependence of the concentration of
this particular type of bridge on the concentration of SO2–

4
in seawater

for a range of pH between 4 and 8. The brine compositions correspond
to those reported by Strand et al. (2006), i.e. seawater with no sulphate,
with an average seawater concentration of SO2–

4
, and with three times

the average concentration. The concentration of bridges is plotted as a
product of surface species that form it, which corresponds to a first-order
equilibrium reaction A + B
 C.
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Figure 4.12: Simulated dependency of the electrostatic interaction between oil and rock,
measured as [>COO−][>CaOH+] product, on the sulphate concentration in seawater at
different values of pH. sw×s denotes a multiple of an average seawater concentration
of SO2–

4
.

It can be seen that increasing the sulphate concentration indeed reduces
the [>COO−][>CaOH+] product. However, the same model still cannot
explain why the oil recovery increased in the experiments of Yousef
et al. (2010) with the injection of progressively diluted seawater, as it
predicts a higher [>COO−][>CaOH+] product when seawater is mixed
with distilled water. It means that the physical wettability state cannot
be described only by the formation of the bonds of this type. While
this remains a question for future work, we note that the described
surface complexation models can be readily incorporated in our pore-
scale flow simulator based on the unstructured FE - FV method because
of its separate treatment of the elements that comprise grain and oil
surfaces.

4.5 summary

In this chapter we presented a 1D numerical model for the continuum-
scale simulation of the transport of seawater-like brines through chalk
cores. It accounts for aqueous chemistry, surface adsorption and kinetic
dissolution and precipitation of mineral phases. The model was imple-
mented using the PHREEQC software.

We reviewed available experimental data on the chemical interaction
between seawater and chalk cores and used our model to reproduce
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the experimental findings. To achieve this, several parameters of the
model were set as the degrees of freedom: equilibrium constants for the
adsorption of Ca2+, Mg2+ and SO2–

4
ions and rates of dissolution and

precipitation of the included mineral phases (CaCO
3
, MgCO

3
, CaSO

4
).

The model successfully reproduced the experimental measurements with
a very small variation of these parameters between different experiments.
The main conclusions that we draw from this work are as follows

1. At low temperature the breakthrough curves are affected by the
adsorption of SO2–

4
, Ca2+ and Mg2+ onto the chalk surface; seawater

is in equilibrium with the rock and no change in mineral phases
occurs.

2. At high temperature seawater becomes supersaturated with respect
to magnesite and anhydrite and these phases precipitate during
the coreflooding process. The precipitation of MgCO

3
and CaSO

4

reduces the aqueous concentrations of CO2+
3

and Ca2+ ions which
causes the dissolution of CaCO

3
. Ionic adsorption also takes place

at high temperatures.

3. The relative affinity of Ca2+ and Mg2+ towards the calcite surface
changes with temperature: calcium is more readily adsorbed at
room temperature and magnesium – at elevated temperature. This
results in the substitution of Mg2+ for Ca2+ at the rock surface at
high temperature.

4. Experimental breakthrough curves cannot be reproduced without
considering the mineral dissolution and precipitation as kinetic
processes. This implies that the interaction between seawater and a
chalk rock depends of the fluid injection rate. Therefore the relevant
results that are true for spontaneous imbibition of seawater into
chalk samples cannot be directly extrapolated to the experiments
that involve the forced fluid injection.

5. The mechanism of magnesite precipitation changes with respect to
the fluid injection rate: at low rates it is dominated by the magnesite
transport and at high rates – by the crystal growth.

6. The calcite surface area that determines the rate of calcite dissolu-
tion seems to be much less in the coreflooding experiments when
compared to the experiments on crushed rocks. We explain this
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result as a consequence of magnesite precipitation over the calcite
surface.

7. Finally, it is rather instructional that even such intuitively simple ex-
periments, involving a single homogeneous rock type and a single-
phase brine of known ionic composition are still poorly constrained
and are non-trivial to simulate numerically. This highlights a major
hurdle in simulating the diagenesis of the geological systems which
are described with a much higher level of uncertainty than a set of
simple laboratory experiments presented in this chapter.

We suggest that both adsorption and mineral dissolution and precipita-
tion would occur during the two-phase reactive transport. At this stage
we can only speculate on their specific impact on oil recovery. In doing
so, it is important to mention the result of Standnes and Austad (2000a),
which showed that chalk samples that were fully saturated with oil (i.e.
no connate water) could resist water imbibition after aging only when
the oil was characterized by an acid number (AN) of more than 1.73 mg
KOH/g. Also, ANs below this value still reduced the rate of imbibition
as compared to the AN of zero. This implies that the wettability of chalk
is related to this particular characteristic of crude oil. It is therefore pos-
sible that the wettability states of rocks used in two-phase experiments,
reviewed in Chapter 1, were very different. Tables 1.1-1.3 reveal a tenfold
reduction in AN between crude oils used by Fathi et al. (2010); Strand et al.
(2006); Zhang et al. (2007) and by Gupta et al. (2011); Yousef et al. (2010).
Importantly, all experiments with high AN manifest an increase in oil re-
covery with increasing concentration of divalent ions, while experiments
with low AN demonstrate the improvement when their concentration is
reduced. In addition to that, high AN experiments are also characterized
by slow flow rates, i.e. either being spontaneous imbibition experiments
or coreflood experiments flooded at a rate of 1 PV/day. Experiments of
Gupta et al. (2011); Yousef et al. (2010) were conducted at a flow rate of
about 10 PV/day. In this chapter we saw that it is important to consider
mineral dissolution and precipitation as kinetic processes.

Therefore, based on the indirect evidence we hypothesize that in the
experiments described by Fathi et al. (2010); Strand et al. (2006); Zhang
et al. (2007) the affinity of oil to the rock was high and the oil recovery
was affected by calcite dissolution; in the experiments reported by Gupta
et al. (2011); Yousef et al. (2010) core samples were less oil-wet and the
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flow rate was high, hence the recovery improvement was due to surface
charge alteration. The experimental procedures to confirm or refute this
hypothesis are clear: for crude oils with low AN the recovery should be
observed with both high (as a result of surface charge alteration) and
low (due to calcite dissolution) flow rates, so for high rates the recovery
should improve with seawater dilution (as reported by Yousef et al.
(2010)) and have lower sensitivity to temperature, while for low rates
it should improve with the increase of SO2–

4
, Ca2+ and Mg2+ levels and

have higher sensitivity to temperature; for crude oils with high AN the
recovery should be observed only at slow flow rates and increased levels
of SO2–

4
, Ca2+ and Mg2+ and manifest a high sensitivity to temperature

changes.
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5
S U M M A RY, C O N C L U S I O N S A N D F U T U R E W O R K

5.1 summary and conclusions

Understanding what controls the enhanced oil recovery during water-
flooding of carbonate rocks is essential as the majority of the world’s
remaining hydrocarbon reserves are contained in carbonate rocks. To
further this understanding, in this work we addressed the problem of
the numerical pore-scale investigation of the mechanisms that facilitate
the oil release from carbonate rocks during waterflooding. This problem
involves three components – (1) reactive solute transport, (2) two-phase
fluid flow, (3) chemical reaction between three (two fluids and one solid)
phases. To this date, no work has been published that demonstrates the
successful combination of all three components of this programme. The
main complications include the computational limitations, i.e. both limi-
tations of hardware speed and deficiencies of utilized algorithms, and
incomplete understanding of physics and chemistry behind the relevant
EOR processes themselves. In this thesis, we attempted to address these
issues with respect to carbonate rocks. More specifically,

• In Chapter 2 we presented a direct pore-scale procedure for modelling
the single-phase fluid flow and transport in reconstructed 3D porous
medium. Our implementation of the pore-scale simulation includes
(1) a FE solution of the stationary Stokes equation on unstructured
meshes for an accurate representation of domain geometry; (2)
an AMG method for solving the resulting FE linear problem, which
offers a linear number-of-operations scalability with respect to mesh
refinement and hence significantly mitigates the computer resources
limitation factor; (3) an optional domain decomposition for problem
parallelization. Therefore, the main novelty of this approach is
the implementation of numerical methods that are best capable
of tackling and making some progress with the complex problem
described above. By utilizing an unstructured mesher that works
directly on the CT data, stable first-order discretization schemes for

116



5.1 summary and conclusions

the governing PDEs and a state-of-the-art algebraic multigrid solver,
we for the first time bring the problem of direct pore-scale fluid
flow within the reach of research groups that do not have access to
computer clusters with hundreds of computing nodes. By applying
this procedure to a reconstructed Fontainebleau sandstone sample
we were able to demonstrate that the FE solution yields the same
permeability value as the LB method while requiring a fraction of
time necessary for the LB solution to converge. We also highlighted
the detrimental effect of reducing the amount of geometrical data
by means of excessive domain boundary smoothing. This implies
that given an accurate mesh of a domain it is much more preferable
to use the FE-based method of calculating the resulting permeability
than the currently more wide-spread LB approach.

• In Chapter 2 we then presented a method for solving the transient
problem of the pore-scale inert solute transport. For it implementation
we employed a combined FE-FV technique. Transport modelling
in Chapter 2 demonstrated the correct transition between various
flow regimes from diffusion- to convection-dominated and gave
quantitatively similar results when upscaled sample dispersivity
was compared to other published results. It also showed a slight
decrease in the sample dispersivity as well as in the relative con-
tribution of diffusion in the mixed flow regime in the case of a
mesh with inflated pore throats. Finally, we observed that a mesh
reconstruction procedure determines the onset of the breakthrough
curves tailing with respect to the Peclet number.

• In Chapter 3 we presented a computational method for the direct pore-
scale simulation of the reactive solute transport. The method extends
the tools of the previous chapter, with the chemical reactions being
decoupled from the transport calculations which allows us to link
any stand-alone chemical solver to our simulator. We applied the
procedure to a reconstructed Fontainebleau sandstone sample and
showed the retardation behavior of the averaged breakthrough
curves in the presence of the solute adsorption on the grain walls.

• We then showed the method for simulating the presence of the second
immiscibly trapped fluid phase based on calculating the distance map of the
pore space. We demonstrated how it can be combined together with
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the solute transport computation to model the possible mechanism
for the enhanced model recovery when part of the pore space is
occupied by a second immiscibly trapped fluid phase. We showed
that even in such a simple model the interaction between the trans-
port and the chemical reactions is non-trivial, i.e. the competition
between diffusion and adsorption can prevent the solute from being
dispatched to the oil/water/rock contact line. In reality the affinity
of an ion towards the surface is influenced among other things by
the surface charge which in turn depends on the ionic composition
of the brine. This may be one of the reasons for the sensitivity of
the oil recovery to the ionic composition of the brine.

The major advantage of using the FE-FV method for the fluid flow
simulations is its capability to simulate the transport phenomena along
the 2D surfaces within a 3D domain. Due to this capability it is possible to
formally include the micron-scale water films at the rock surface without
modifying the mesh itself, as well as to model the solute diffusion along
the oil-water or oil-rock interfaces, which are suggested to be the crucial
mechanisms for dispatching the wettability altering agents to the oil-
rock interface (Hammond and Unsal, 2009). We see this as a compelling
reason to choose the FE-FV method over other alternatives to simulate the
pore-scale reactive transport phenomena relevant to wettability alteration.

The tools that we presented in Chapters 2 and 3 essentially laid the
groundwork for the simulation of the pore-scale propagation of the
reactive solutes and their chemical interaction with both the oil phase
and the rock.

• In Chapter 4 we considered a specific seawater/chalk system and identified
what chemical interactions can be inferred from the published experimen-
tal studies of this particular combination of the porous medium and the
injected fluid. To this end, we presented a 1D numerical model for
the continuum-scale simulation of the transport of seawater-like
brines through chalk cores. It accounts for aqueous chemistry, sur-
face adsorption and kinetic dissolution and precipitation of mineral
phases. The model was implemented using the PHREEQC software.
We reviewed available experimental data on the chemical interaction
between seawater and chalk cores in Chapter 4 and used our model
to reproduce the experimental findings. To achieve this, several
parameters of the model were set as the degrees of freedom: equilib-
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rium constants for the adsorption of Ca2+, Mg2+ and SO2–
4

ions and
rates of dissolution and precipitation of the included mineral phases
(CaCO

3
, MgCO

3
, CaSO

4
). The model successfully reproduced the

experimental measurements with a very small variation of these
parameters between different experiments. We concluded that these
measurements can be explained by a combination of the adsorption
of ions onto the rock surface and the dissolution and precipitation
of mineral phases. Based on the indirect evidence, we suggested
how these results can be extrapolated to the two-phase spontaneous
imbibition and forced injection experiments to explain the observed
trends.

Although the dependency of the upscaled two-phase flow properties
on the reactive transport was not analysed in the present work, certain
conclusion about the link between our results and the large-scale reser-
voir simulations can still drawn. Presently all attempts to simulate the
enhanced oil recovery mechanisms at the field scale in either sandstones
or carbonates resort to linking the capillary pressure and/or relative
permeability curves to a single abstract solute concentration in the bulk
or the amount of solute adsorbed at the rock surface. As evident from
the results of Chapter 4, both bulk and surface concentration levels of
all participating ions are products of a complex chemical interplay that
depends on the initial concentrations, temperature and flow rate, and po-
tentially the crude oil properties. It is, therefore, necessary to incorporate
the effect of all these factors rather than a single salinity level. Moreover,
it is important to acknowledge that the mechanism that facilitates the oil
release during the spontaneous imbibition may be different from what
liberates oil during the forced injection, i.e. rock dissolution vs. surface
charge alteration. This should be reflected in modelling the EOR processes
in fractured vs. non-fractured reservoirs.

5.2 future work

Obviously, the subject of enhanced oil recovery in carbonates is far from
being fully studied. The directions in which this particular work can be
extended include the following:

• Oil-water and oil-rock interactions or, more generally, a chemical the-
ory of wettability of carbonate rocks. We have already mentioned at
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the end of the previous chapter how a surface complexation model
can be used to analyze the link between the brine composition and
the concentration of surface species at the water-oil interface.

• Inclusion of all relevant chemical reactions into the pore-scale model.
Our pore-scale simulator with a rule-based method for determining
the oil occupancy does not account for an accurate flow of the oil
phase, but it can be used to determine whether or in what cases the
included chemical reactions lead to conditions, favourable for the
enhanced oil recovery. Ideally, EOR phenomena should be described
by the full two-phase transient Navier-Stokes equations together
with the reactive solute transport.

• Considering that we have identified the dissolution and precipita-
tion as the key chemical effects that occur during the injection of
seawater into chalk rocks, an ideal pore-scale simulator should be
able to account for the changes in the geometry of the pore space.

• An influence of the rock surface charge on the flow of charged ions
can be incorporated in our model to simulate the electrokinetic
flows. This can be done by recasting the advection-diffusion equa-
tion in the form of the Nernst-Planck equation, that accounts for
the motion of ions subject to electric potential.

• A recent study by Jackson and Vinogradov (2012) showed a link
between the wettability state of carbonate rocks and various elec-
trokinetic parameters, such as the streaming potential coupling
coefficient, zeta potential and transported excess of charge. A hy-
pothesis based on the local variations of the surface charge due to
the presence of sandwiched oil layers has been proposed by the
authors to explain the observed results. The measurements were
conducted at residual oil saturation, i.e. the oil phase was immo-
bile. Hence, by using the PHREEQC software to calculate the surface
charge and potential and by coupling it with the Stokes and Nernst-
Planck equations, it will be possible to investigate the proposed
hypothesis numerically.

• Ultimately, finite element pore-scale simulations should be used
to pursue the second objective outlined in the introduction to this
thesis, namely what is the link between the reactive transport in
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carbonates and the upscaled characteristics of the two-phase flow
through them, i.e. residual oil saturation, relative permeability and
capillary pressure curves. It should be also used to highlight the
difference in the enhanced recovery during the spontaneous imbibi-
tion and forced injection experiments, proposed at the end of the
previous chapter. This will make it possible to use the pore-scale
modelling results in the large-scale simulations, such as discrete
fracture-matrix simulations where the fluid transport is modelled ex-
plicitly only through fractures and the exchange between fractures
and the porous matrix is assumed to occur due to the spontaneous
imbibition.

• It is important to experimentally investigate the influence of crude
oil properties on the outcome of the wettability alteration in car-
bonates. This has largely been neglected in all the published exper-
imental investigations. Suggestions for the possible experimental
design were provided at the end of Chapter 4.
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