1,403 research outputs found
Long-range interactions between an atom in its ground S state and an open-shell linear molecule
Theory of long-range interactions between an atom in its ground S state and a
linear molecule in a degenerate state with a non-zero projection of the
electronic orbital angular momentum is presented. It is shown how the
long-range coefficients can be related to the first and second-order molecular
properties. The expressions for the long-range coefficients are written in
terms of all components of the static and dynamic multipole polarizability
tensor, including the nonadiagonal terms connecting states with the opposite
projection of the electronic orbital angular momentum. It is also shown that
for the interactions of molecules in excited states that are connected to the
ground state by multipolar transition moments additional terms in the
long-range induction energy appear. All these theoretical developments are
illustrated with the numerical results for systems of interest for the
sympathetic cooling experiments: interactions of the ground state Rb(S)
atom with CO(), OH(), NH(), and CH() and of the
ground state Li(S) atom with CH().Comment: 30 pages, 3 figure
Overlapping Resonances Interference-induced Transparency: The Photoexcitation Spectrum of Pyrazine
The phenomenon of "overlapping resonances interference-induced transparency"
(ORIT) is introduced and studied in detail for the
photoexcitation of cold pyrazine (CHN). In ORIT a molecule becomes
transparent at specific wavelengths due to interferences between envelopes of
spectral lines displaying overlapping resonances. An example is the
internal conversion in pyrazine where destructive
interference between overlapping resonances causes the light
absorption to disappear at certain wavelengths. ORIT may be of practical
importance in multi-component mixtures where it would allow for the selective
excitation of some molecules in preference to others. Interference induced
cross section enhancement is also shown.Comment: 13 pages, 7 figure
How to Measure the Quantum State of Collective Atomic Spin Excitation
The spin state of an atomic ensemble can be viewed as two bosonic modes,
i.e., a quantum signal mode and a -numbered ``local oscillator'' mode when
large numbers of spin-1/2 atoms are spin-polarized along a certain axis and
collectively manipulated within the vicinity of the axis. We present a concrete
procedure which determines the spin-excitation-number distribution, i.e., the
diagonal elements of the density matrix in the Dicke basis for the collective
spin state. By seeing the collective spin state as a statistical mixture of the
inherently-entangled Dicke states, the physical picture of its multi-particle
entanglement is made clear.Comment: 6 pages, to appear in Phys. Rev.
Cosmic microwave background constraints on cosmological models with large-scale isotropy breaking
Several anomalies appear to be present in the large-angle cosmic microwave
background (CMB) anisotropy maps of WMAP, including the alignment of
large-scale multipoles. Models in which isotropy is spontaneously broken (e.g.,
by a scalar field) have been proposed as explanations for these anomalies, as
have models in which a preferred direction is imposed during inflation. We
examine models inspired by these, in which isotropy is broken by a
multiplicative factor with dipole and/or quadrupole terms. We evaluate the
evidence provided by the multipole alignment using a Bayesian framework,
finding that the evidence in favor of the model is generally weak. We also
compute approximate changes in estimated cosmological parameters in the
broken-isotropy models. Only the overall normalization of the power spectrum is
modified significantly.Comment: Accepted for publication in Phys. Rev.
Feshbach resonances in ultracold ^{6,7}Li + ^{23}Na atomic mixtures
We report a theoretical study of Feshbach resonances in Li + Na
and Li + Na mixtures at ultracold temperatures using new accurate
interaction potentials in a full quantum coupled-channel calculation. Feshbach
resonances for in the initial collisional open channel LiNa are found to agree with previous
measurements, leading to precise values of the singlet and triplet scattering
lengths for the LiNa pairs. We also predict additional Feshbach
resonances within experimentally attainable magnetic fields for other collision
channels.Comment: 4 pages, 3 figure
Ro-vibrational relaxation of HCN in collisions with He: Rigid bender treatment of the bending-rotation interaction
We present a new theoretical method to treat atom-rigid bender inelastic
collisions at the Close Coupling level (RBCC) in the space fixed frame. The
coupling between rotation and bending is treated exactly within the rigid
bender approximation and we obtain the cross section for the rotational
transition between levels belonging to different bending levels. The results of
this approach are compared with those obtained when using the rigid bender
averaged approximation (RBAA) introduced in our previous work dedicated to this
system. We discuss the validity of this approximation and of the previous
studies based on rigid linear HCN
Isotopic replacement in ionic systems: the 4He2+ + 3He -> 3He4He+ + 4He reaction
Full quantum dynamics calculations have been carried out for the ionic
reaction 4He2+ + 3He and state-to-state reactive probabilities have been
obtained using both a time-dependent (TD) and a time-independent (TI) approach.
An accurate ab-initio potential energy surface has been employed for the
present quantum dynamics and the two sets of results are shown to be in
agreement with each other. The results for zero total angular momentum suggest
a marked presence of atom exchange (isotopic replacement) reaction with
probabilities as high as 60%. The reaction probabilities are only weakly
dependent on the initial vibrational state of the reactants while they are
slightly more sensitive to the degree of rotational excitation. A brief
discussion of the results for selected higher total angular momentum values is
also presented, while the l-shifting approximation [1] has been used to provide
estimates of the total reaction rates for the title process. Such rates are
found to be large enough to possibly become experimentally accessible
Total angular momentum representation for atom-molecule collisions in electric fields
It is shown that the atom-molecule collision problem in the presence of an
external electric field can be solved using the total angular momentum
representation in the body-fixed coordinated frame, leading to a
computationally efficient method for ab initio modeling of low-temperature
scattering phenomena. Our calculations demonstrate rapid convergence of the
cross sections for vibrational and Stark relaxation in He-CaD collisions with
the number of total angular momentum states in the basis set, leading to a
5-100 fold increase in computational efficiency over the previously used
methods based on the fully uncoupled space-fixed representation. These results
open up the possibility of carrying out numerically converged quantum
scattering calculations on a wide array of atom-molecule collisions and
chemical reactions in the presence of electric fields.Comment: 19 pages, 3 figures, 1 tabl
Non-adiabatic effects in long-pulse mixed-field orientation of a linear polar molecule
We present a theoretical study of the impact of an electrostatic field
combined with non-resonant linearly polarized laser pulses on the rotational
dynamics of linear molecules. Within the rigid rotor approximation, we solve
the time-dependent Schr\"odinger equation for several field configurations.
Using the OCS molecule as prototype, the field-dressed dynamics is analyzed in
detail for experimentally accessible static field strengths and laser pulses.
Results for directional cosines are presented and compared to the predictions
of the adiabatic theory. We demonstrate that for prototypical field
configuration used in current mixed-field orientation experiments, the
molecular field dynamics is, in general, non-adiabatic, being mandatory a
time-dependent description of these systems. We investigate several field
regimes identifying the sources of non-adiabatic effects, and provide the field
parameters under which the adiabatic dynamics would be achieved.Comment: 16 pages, 16 figures. Submitted to Physical Review
Extension of the Morris-Shore transformation to multilevel ladders
We describe situations in which chains of N degenerate quantum energy levels,
coupled by time-dependent external fields, can be replaced by independent sets
of chains of length N, N-1,...,2 and sets of uncoupled single states. The
transformation is a generalization of the two-level Morris-Shore transformation
[J.R. Morris and B.W. Shore, Phys. Rev. A 27, 906 (1983)]. We illustrate the
procedure with examples of three-level chains
- …