21 research outputs found

    Estimation of Health Risks Associated with Household Dust Contamination in Bolu (Turkey)

    Get PDF
    The levels of metals associated with dust is higher in indoor environment as compared to settled dust or soil in the exterior counterpart in the urban centers. The metals can be transferred to human body via inhalation, ingestion and dermal contact upon exposure and pose a significant health problem. The primary objectives of this study are (i) to determine the levels of metals in home dust samples in Bolu, Turkey, (ii) to assess the associated health risk when citizens are exposed to these metals in indoor environment. To end this, sixteen vacuum cleaning bags containing dust were collected from the homes located in the city center of Bolu (Turkey) between November and December 2017. The collected samples were analyzed by employing Wavelength Dispersive X-Ray Fluorescence (WDXRF) spectrometer in terms of major (Al, Ca, Cl, K, Mg, Na, P, S and Si) and minor (As, Ba, Br, Ce, Co, Cr, Cu, Fe, Mn, Nb, Ni, Pb, Rb, Sn, Sr, Ti, Y, Zn and Zr) metals at Turkish Atomic Energy Agency, Radiation and Accelerator Technologies Department, Ankara (Turkey). The measured levels of metals in the samples were ranged from 6.52±1.60 µg g-1 for Y to 10.4±3.3 % for Na. The crustal enrichment factor (EFcrust) was calculated in order to understand the contamination level of household dust samples as compared to soil composition. EFcrust results revealed that there is minimal enrichment of Si, Rb, Ti, Ba, K, Y and Mn in household dust samples with respect to soil composition. On the other hand, Zn, Cl, and S found to be extremely enriched in the samples according to EFcrust values. Health risk assessment due to household dust metal exposure depicted that ingestion of dust particles is the main route of exposure for both adults and children. Overall, the calculated HQ value lt;1.0 suggesting there is no significant non-carcinogenic health risk for the residents. Cancer risks associated with Pb and Cr were estimated to be within the EPA’s safe limits (1x10-6 and 1.0x10-4)

    Kocaeli’de evlerde, ofislerde ve okullarda iç ortam hava kalitesinin belirlenmesi

    Get PDF
    TÜBİTAK ÇAYDAG01.01.2008Bu çalışmada, Kocaeli’de farklı bölgelerde ve farklı mikroçevrelerde (ev, okul, ofis), iç ve dış ortamda yapılan örneklemeler ile aktif ve pasif örnekleme ve ölçüm teknikleri kullanılarak 2 farklı partikül fraksiyonunda (PM2.5 ve PM10) 16 ağır metal (Al, As, Ca, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, S, Si, Ti, V ve Zn), uçucu organik bileşikler (UOB’ler), SO2, NO2 ve O3 konsantrasyonları belirlenmiştir. Ayrıca, iç ortamda ölçülen konsantrasyonlarla maruziyet arasındaki ilişkiyi kurabilmek için, kişisel örnekleyiciler kullanılarak kişisel maruziyet düzeyleri de belirlenmiştir. NO2 için İç Ortam/Dış Ortam konsantrasyon oranlarının evlerde her 2 mevsimde de okullar ve ofislere nazaran yüksek bulunması evlerin iç ortamlarında NO2 kirletici kaynaklarının ofis ve okullara oranla daha baskın olduğu göstermektedir. İç Ortam/Dış Ortam oranlarının 1’in çok altında bulunması O3 ve SO2’in dış ortam kaynaklı bir kirletici olduğunu ve iç ortamlarda önemli bir kaynağının bulunmadığını göstermektedir. PM2.5 fraksiyonundaki toprak kaynaklı elementlerin iç ve dış ortam konsantrasyonlarının yüksek düzeylerde bulunması bu elementlerin iç ortamlara taşınımının yüksek olduğunu göstermektedir. PM2.5 kişisel maruziyet düzeylerinin As, S, V, Cu ve Cr gibi yanma kaynaklı elementler için iç ortam maruziyet düzeylerinden 2–6 kat daha yüksek olması ve bazı mevsimsel farklılıklar bulunmasına rağmen İç Ortam/Dış Ortam oranlarının genellikle 0.3–0.7 aralığında bulunması gözlenen yüksek kişisel maruziyet düzeylerinde dış ortamların etkisini göstermektedir. PM10 partikül fraksiyonunda belirlenen ağır metallerin büyük bir bölümü için İç Ortam/Dış Ortam oranlarının 1’den küçük bulunması dış ortam kirletici kaynaklarının iç ortam kirletici kaynaklarına daha baskın olduğunu göstermektedir. En yüksek UOB kirlilik düzeylerine örneklenen kişilerde rastlanırken bunu iç ortam ve dış ortam UOB kirlilik düzeyleri takip etmiştir. Her 2 mevsimde de toluen ev, ofis ve okullardaki UOB kirlilik düzeylerine en çok katkıda bulunan bileşik olurken onu etilbenzen, m,p-ksilen, stiren, nonan, hegzan, benzen, o-ksilen ve heptan bileşikleri takip etmektedir. Kentsel alanlarda elde edilen toplam UOB konsantrasyonlarının endüstriyel alanlarda elde edilen değerlerle uyum içinde bulunmuştur. Trafiğin belirteci olan bileşikler (BTEX, 1,2,4-trimetilbenzen) kentsel alanlarda yüksek bulunurken petrokimyanın belirteci olan hexane ve heptane bileşikleri endüstrinin yoğun olduğu alanlarda yüksek bulunmuştur. Ayrıca kentsel ve endüstriyel alanlarda elde edilen UOB konsantrasyonlarının sanayii ve trafikten uzak alanlarda elde edilen konsantrasyonlardan yüksek olması trafik ve sanayiinin tesbit edilen UOBlere olan katkısının ne kadar yüksek olduğunu göstermektedir. İç ortam, dış ortam ve kişisel maruziyet kirlilik düzeylerine etki ederek hava kalitesine olumsuz yönde katkıda bulunan kirletici kaynakların belirlenmesi amacıyla Pozitif Matris Faktörizasyonu (PMF) reseptör modelleme tekniği kullanılmıştır. PMF modellemesi, korelasyon analizi, iç ortam/dış ortam oranları, mikroçevre karakteristikleri, anketler ve zaman aktivite çizelgeleri incelenen kirleticilerin en önemli emisyon kaynaklarının endüstri, trafik ve sigara kullanımı olduğunu göstermektedir. İç ortam, dış ortam ve kişisel maruziyet düzeylerinin dünyanın diğer bölgelerinde yapılan çalışmalarda raporlanan düzeyler ile kıyaslanabilir olduğu bulunmuştur. Kişisel maruziyet konsantrasyonları kullanılarak çalışmada incelenen inorganik ve organik kirleticilerden kaynaklanan sağlık riski değerlendirmesi yapılmıştır. Ev, ofis ve okullarda örneklenen kişiler için hesaplanan “Toplam Kanser Riski” ve “Toplam Tehlike İndeksi” değerleri hem ortalama konsantrasyonlar hem de en kötü senaryo göz önüne alınarak incelendiğinde en yüksek risk altında bulunan kişilerin ev hanımları olduğu bunları öğretmenler ve ofis çalışanlarının takip ettiği söylenebilir. Değerlendirme kentsel, endüstriyel, endüstri ve trafikten uzak alanlar için yapıldığında her 3 alanda da yaşayan kişilerin birbirine yakın ve yüksek kanser riski taşıdıkları söylenebilir. Aynı değerlendirme sigara kullanan ve kullanmayan kişiler için yapıldığında sigara kullanan kişilerin kullanmayanlara nazaran yaklaşık %50 daha fazla kanser riski taşıdıkları gözlenmiştir.In this study, indoor and outdoor environment samples were taken from different regions and microenvironments (home, school, office) in Kocaeli. Through active and passive sampling and measurement techniques, 16 heavy metals (Al, As, Ca, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, S, Si, Ti, V and Zn) at 2 different particle fractions (PM2.5 and PM10), volatile organic compounds (VOCs), and SO2, NO2 and O3 concentrations were determined. Moreover, in an effort to establish the relationship between exposure and the indoor concentrations measured, personal samplers were used to determine personal exposure levels. Indoor/outdoor concentration ratios for NO2 were higher in homes than in schools or offices in both summer and winter, which shows that sources of NO2 pollutants in indoor environments of homes are more dominant than those found in offices or schools. The indoor/outdoor ratios were far below 1, indicating that O3 and SO2 are pollutants originating from outdoor environments and that they do not have significant sources in indoor environments. The presence of high levels of indoor and outdoor concentrations of crustal elements at PM2.5 fractions indicates that these elements are transported into indoor environments at high levels. PM2.5 personal exposure levels were 2–6 times higher than indoor levels for combustion-related elements such as As, S, V, Cu and Cr, and although there were some seasonal differences, the indoor/outdoor environment ratios generally ranged between 0.3–0.7 and indicated the effect of outdoor environments on the observed high personal exposure levels. The indoor/outdoor ratios for a major portion of the determined heavy metals at PM10 particle fractions were smaller than 1, showing that outdoor pollutants are more dominant than indoor pollutants. The highest VOC pollution levels were encountered in individuals in the sample, and this was followed by VOC pollution levels in indoor and outdoor environments. In both seasons, toluene levels were the highest pollutants for homes, offices and schools, followed by ethylbenzene, m/p-xylene, styrene, nonane, hexane, benzene, o-xylene and heptane. Total VOC concentrations obtained from urban areas were consistent with values obtained from industrial areas. Components that are indicators of traffic (BTEX, 1,2,4-trimethylbenzene) were measured at high levels in urban areas, while hexane and heptane components, which are indicators of petrochemistry, were recorded at high levels in high- industry areas. Moreover, VOC concentrations obtained from urban and industrial areas were higher than concentrations found in areas far from industry and traffic, which demonstrates the high contribution of traffic and industry to measured VOCs. This study investigated the summer and winter concentrations of selected pollutants and the relationship between indoor and outdoor environments. In order to determine pollutant sources that negatively contribute to air quality by affecting the degree of indoor, outdoor and personal exposures, the Positive Matrix Factorization (PMF) receptor modeling technique was used, which is a multivariate statistical analysis method. PMF, correlation analyses, indoor/outdoor ratios, microenvironment characteristics, responses to questionnaires, and time activity information suggested that industry, traffic and smoking represent the main emission sources of pollutants investigated. Indoor, outdoor and personal exposure concentration values were compared to values measured in different parts of the world, thereby evaluating consistency with the observed pollution level. Based on personal exposure concentrations, an assessment was conducted concerning the health risks associated with the inorganic and organic pollutants investigated in this study. When the calculated values for “Total Health Risk” and “Total Hazard Index” for people sampled in homes, offices and schools were examined by considering both the average concentrations and the worst scenarios, it was revealed that housewives are at the highest risk, followed by teachers and office workers. An examination of urban, industrial and far from urban, industrial and traffic areas revealed that people living in all of these three areas are subjected to high cancer risks, which are at similar levels. When the same evaluation was carried out for smokers and non-smokers, it was observed that smokers have a 50% higher risk of cancer compared to non-smokers

    Bolu’da Ev Tozu ile İlişkili Sağlık Risklerinin Tahmin Edilmesi

    No full text
    The levels of metals associated with dust is higher in indoor environment as compared to settled dust or soil in the exterior counterpart in the urban centers. The metals can be transferred to human body via inhalation, ingestion and dermal contact upon exposure and pose a significant health problem. The primary objectives of this study are (i) to determine the levels of metals in home dust samples in Bolu, Turkey, (ii) to assess the associated health risk when citizens are exposed to these metals in indoor environment. To end this, sixteen vacuum cleaning bags containing dust were collected from the homes located in the city center of Bolu (Turkey) between November and December 2017. The collected samples were analyzed by employing Wavelength Dispersive X-Ray Fluorescence (WDXRF) spectrometer in terms of major (Al, Ca, Cl, K, Mg, Na, P, S and Si) and minor (As, Ba, Br, Ce, Co, Cr, Cu, Fe, Mn, Nb, Ni, Pb, Rb, Sn, Sr, Ti, Y, Zn and Zr) metals at Turkish Atomic Energy Agency, Radiation and Accelerator Technologies Department, Ankara (Turkey). The measured levels of metals in the samples were ranged from 6.52±1.60 µg g-1 for Y to 10.4±3.3 % for Na. The crustal enrichment factor (EFcrust) was calculated in order to understand the contamination level of household dust samples as compared to soil composition. EFcrust results revealed that there is minimal enrichment of Si, Rb, Ti, Ba, K, Y and Mn in household dust samples with respect to soil composition. On the other hand, Zn, Cl, and S found to be extremely enriched in the samples according to EFcrust values. Health risk assessment due to household dust metal exposure depicted that ingestion of dust particles is the main route of exposure for both adults and children. Overall, the calculated HQ value lt;1.0 suggesting there is no significant non-carcinogenic health risk for the residents. Cancer risks associated with Pb and Cr were estimated to be within the EPA’s safe limits (1x10-6 and 1.0x10-4)

    Elemental composition of PM10and PM2.5in erzurum urban atmosphere, Turkey

    No full text
    This study investigated the elemental concentrations of atmospheric particulate matter (PM10, PM2.5) and their relationships with meteorological factors in Erzurum urban centre, Turkey. The average elemental concentration PM10values for Ca, Mg, Si, Al, Pb, Zn, Cu and Ni in Erzurum city atmosphere were 2112, 184, 2134, 746, 6, 44, 38 and 2 ng/m3, respectively, and that of PM2.5 were 103, 30, 717, 86, 4, 6, 70 and 1 ng/m3, respectively. Furthermore, during the sampling period, whilst on average 90% of some alkali metals (Si, Ca, Al, Mg) were observed in large size fraction, on average 55% of some elements (S, Zn, Pb, K) were measured in fine size fraction. For the purposes of investigating the sources of the elemental PM concentrations measured, the widely documented crustal enrichment factors method was used. K, Mg, Ca, Ti, Cr, Mn were observed to be from crustal sources in coarse fraction (PM10-2.5), but S, Cu, Zn, Pb were found to be anthropogenic. Concentrations of fine fraction (PM 2.5) elements Mg, Ca, Al, Si, Ti were found to be entirely of crustal origin (as per coarse fraction), and both crustal and anthropogenic sources were important in concentrations of K, Cr, Mn and Ni, whereas S, Cu Zn and Pb levels were entirely of anthropogenic origin. Moreover, fine mode fraction of PM (PM2.5) showed considerable seasonal variations of elemental concentrations which was thought to originate from anthropogenic sources

    An approach to measure trace elements in particles collected on fiber filters using EDXRF

    No full text
    A method developed for analyzes of large number of aerosol samples using Energy Dispersive X-Ray Fluorescence (EDXRF) and its performance were discussed in this manuscript. Atmospheric aerosol samples evaluated in this study were collected on cellulose fiber (Whatman-41) filters, employing a Hi-Vol sampler, at a monitoring station located on the Mediterranean coast of Turkey. between 1993 and 2001. Approximately 1700 samples were collected in this period. Six-hundred of these samples were analyzed by instrumental neutron activation (INAA), and the rest were archived. EDXRF was selected as an analytical technique to analyze 1700 aerosol samples because of its speed and non-destructive nature. However, analysis of aerosol samples collected on fiber filters with a surface technique such as EDXRF was a challenge. Penetration depth calculation performed in this study revealed that EDXRF can obtain information from top 150 mu m of our fiber filter material. Calibration of the instrument with currently available thin film standards caused unsatisfactory results since the actual penetration depth of particles into fiber filters were much deeper than 150 mu m. A method was developed in this manuscript to analyze fiber filter samples quickly with XRF. Two hundred samples that were analyzed by INAA were divided into two equal batches. One of these batches was used to calibrate the XRF and the second batch was used for verification. The results showed that developed method can be reliably used for routine analysis of fiber samples loaded with ambient aerosol

    The Use Of Back Trajectory Cluster Analysis Withpm2.5 Composition At The Eastern Black Sea Of Turkey

    No full text
    In this study, the influence of synoptic-scale atmospheric transport patterns on observed levels of trace elements at Eastern Black Sea region of Turkey was examined. Daily PM2.5 samples were collected at station (40°32’34”N, 39°16’57”E) on the Eastern Black Sea region of Turkey and collected samples were analyzed with ICP-MS for trace element composition. Five-day long back trajectories for March 2011 to December 2013 were calculated for 3 different arrival heights, 100m, 500m and 1500m, and combination of these 3 arrival heights. Back trajectories of air masses arriving in Eastern Black Sea of Turkey were classified into distinct transport patterns by cluster analysis. Cluster Analysis grouped back trajectories into 10 clusters depending on their direction and speed. Measured concentrations of trace elements were assigned to clusters to examine their cluster to cluster variations. Kruskal Wallis test was used to test for significant differences in mean elemental concentration across clusters. Significant cluster to cluster differences were observed in levels of crustal, anthropogenic and mixed origin source elements

    Chemical composition of Eastern Black Sea aerosol-Preliminary results

    No full text
    Trace element composition of atmospheric particles collected at a high altitude site on the Eastern Black Sea coast of Turkey was investigated to understand atmospheric transport of pollutants to this semi-closed basin. Aerosol samples were collected at a timber-storage area, which is operated by the General Directorate of Forestry. The site is situated at a rural area and is approximately 50 km to the Black Sea coast and 200 km to the Georgia border of Turkey. Coarse (PM2.5-10) and fine (PM2.5) aerosol samples were collected between 2011 and 2013 using a "stacked filter unit". Collected samples were shipped to the Middle East Technical University in Ankara, where Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Ba, Pb were measured by Energy dispersive x-ray fluorescence technique (EDXRF). Comparison of measured concentrations of elements with corresponding data generated at other parts of Turkey demonstrated that concentrations of pollution derived elements are higher at Eastern Black Sea than their corresponding concentrations measured at other parts of Turkey, which is attributed to frequent transport of pollutants from north wind sector. Positive matric factorization revealed four factors including three anthropogenic and a crustal factor. Southeastern parts of Turkey, Georgia and Black Sea coast of Ukraine were identified as source regions affecting composition of particles at our site, using trajectory statistics, namely "potential source contribution function" (PSCF)
    corecore