101 research outputs found

    Cryptococcus neoformans Capsular Enlargement and Cellular Gigantism during Galleria mellonella Infection

    Get PDF
    We have studied infection of Cryptococcus neoformans in the non-vertebrate host Galleria mellonella with particular interest in the morphological response of the yeast. Inoculation of C. neoformans in caterpillars induced a capsule-independent increase in haemocyte density 2 h after infection. C. neoformans manifested a significant increase in capsule size after inoculation into the caterpillar. The magnitude of capsule increase depended on the temperature, being more pronounced at 37°C than at 30°C, which correlated with an increased virulence of the fungus and reduced phagocytosis at 37°C. Capsule enlargement impaired phagocytosis by haemocytes. Incubation of the yeast in G. mellonella extracts also resulted in capsule enlargement, with the polar lipidic fraction having a prominent role in this effect. During infection, the capsule decreased in permeability. A low proportion of the cells (<5%) recovered from caterpillars measured more than 30 µm and were considered giant cells. Giant cells recovered from mice were able to kill the caterpillars in a manner similar to regular cells obtained from in vivo or grown in vitro, establishing their capacity to cause disease. Our results indicate that the morphological transitions exhibited by C. neoformans in mammals also occur in a non-vertebrate host system. The similarities in morphological transitions observed in different animal hosts and in their triggers are consistent with the hypothesis that the cell body and capsular responses represent an adaptation of environmental survival strategies to pathogenesis

    Accuracy of magnetic resonance studies in the detection of chondral and labral lesions in femoroacetabular impingement : systematic review and meta-analysis

    Get PDF
    Background: Several types of Magnetic resonance imaging (MRI) are commonly used in imaging of femoroacetabular impingement (FAI), however till now there are no clear protocols and recommendations for each type. The aim of this meta-analysis is to detect the accuracy of conventional magnetic resonance imaging (cMRI), direct magnetic resonance arthrography (dMRA) and indirect magnetic resonance arthrography (iMRA) in the diagnosis of chondral and labral lesions in femoroacetabular impingement (FAI). Methods: A literature search was finalized on the 17th of May 2016 to collect all studies identifying the accuracy of cMRI, dMRA and iMRA in diagnosing chondral and labral lesions associated with FAI using surgical results (arthroscopic or open) as a reference test. Pooled sensitivity and specificity with 95% confidence intervals using a random-effects meta-analysis for MRI, dMRA and iMRA were calculated also area under receiver operating characteristic (ROC) curve (AUC) was retrieved whenever possible where AUC is equivocal to diagnostic accuracy. Results: The search yielded 192 publications which were reviewed according inclusion and exclusion criteria then 21 studies fulfilled the eligibility criteria for the qualitative analysis with a total number of 828 cases, lastly 12 studies were included in the quantitative meta-analysis. Meta-analysis showed that as regard labral lesions the pooled sensitivity, specificity and AUC for cMRI were 0.864, 0.833 and 0.88 and for dMRA were 0.91, 0.58 and 0.92. While in chondral lesions the pooled sensitivity, specificity and AUC for cMRI were 0.76, 0.72 and 0.75 and for dMRA were 0.75, 0.79 and 0.83, while for iMRA were sensitivity of 0.722 and specificity of 0.917. Conclusions: The present meta-analysis showed that the diagnostic test accuracy was superior for dMRA when compared with cMRI for detection of labral and chondral lesions. The diagnostic test accuracy was superior for labral lesions when compared with chondral lesions in both cMRI and dMRA. Promising results are obtained concerning iMRA but further studies still needed to fully assess its diagnostic accuracy

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    Mitragynine Attenuates Withdrawal Syndrome in Morphine-Withdrawn Zebrafish

    Get PDF
    A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway

    Effect of Virulence Factors on the Photodynamic Inactivation of Cryptococcus neoformans

    Get PDF
    Opportunistic fungal pathogens may cause an array of superficial infections or serious invasive infections, especially in immunocompromised patients. Cryptococcus neoformans is a pathogen causing cryptococcosis in HIV/AIDS patients, but treatment is limited due to the relative lack of potent antifungal agents. Photodynamic inactivation (PDI) uses the combination of non-toxic dyes called photosensitizers and harmless visible light, which produces singlet oxygen and other reactive oxygen species that produce cell inactivation and death. We report the use of five structurally unrelated photosensitizers (methylene blue, Rose Bengal, selenium derivative of a Nile blue dye, a cationic fullerene and a conjugate between poly-L-lysine and chlorin(e6)) combined with appropriate wavelengths of light to inactivate C. neoformans. Mutants lacking capsule and laccase, and culture conditions that favoured melanin production were used to probe the mechanisms of PDI and the effect of virulence factors. The presence of cell wall, laccase and melanin tended to protect against PDI, but the choice of the appropriate photosensitizers and dosimetry was able to overcome this resistance.Fundação de Amparo à Pesquisa do Estado de São Paulo (2010/13313–9

    Weak up-regulation of serum response factor in gastric ulcers in patients with co-morbidities is associated with increased risk of recurrent bleeding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum response factor (SRF) is crucial for gastric ulcer healing process. The study determined if gastric ulcer tissues up-regulate SRF and if such up-regulation correlated with co-morbidities and the risk of recurrent bleeding.</p> <p>Methods</p> <p>Ulcer and non-ulcer tissues were obtained from 142 patients with active gastric ulcers for SRF expression assessed by immunohistochemistry. Based on the degree of SRF expression between these two tissue types, SRF up-regulation was classified as strong, intermediate, and weak patterns. The patients were followed-up to determine if SRF up-regulation correlated to recurrent bleeding.</p> <p>Results</p> <p>Gastric ulcer tissues had higher SRF expression than non-ulcer tissues (<it>p </it>< 0.05). Patients with strong SRF up-regulation had lower rates of stigmata of recent hemorrhage (SRH) on the ulcer base than the others (<it>p </it>< 0.05). Multivariate logistic regression confirmed that co-morbidities and weak SRF up-regulation were two independent factors of recurrent gastric ulcer bleeding (<it>p </it>< 0.05). Combining both factors, there was an 8.29-fold (95% CI, 1.31~52.62; <it>p </it>= 0.03) higher risk of recurrent gastric ulcer bleeding.</p> <p>Conclusions</p> <p>SRF expression is higher in gastric ulcer tissues than in non-ulcer tissues. Weak SRF up-regulation, combined with the presence of co-morbidities, increase the risk of the recurrent gastric ulcer bleeding.</p

    Genetic Biomarkers for ALS Disease in Transgenic SOD1G93A Mice

    Get PDF
    The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS) are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10) could be considered potential genetic biomarkers of longevity in transgenic SOD1G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies

    TNFR1 inhibition with a nanobody protects against EAE development in mice

    Get PDF
    TNF has as detrimental role in multiple sclerosis (MS), however, anti-TNF medication is not working. Selective TNF/TNFR1 inhibition whilst sparing TNFR2 signaling reduces the pro-inflammatory effects of TNF but preserves the important neuroprotective signals via TNFR2. We previously reported the generation of a Nanobody-based selective inhibitor of human TNFR1, TROS that will be tested in experimental autoimmune encephalomyelitis (EAE). We specifically antagonized TNF/TNFR1 signaling using TROS in a murine model of MS, namely MOG(35-55)-induced EAE. Because TROS does not cross-react with mouse TNFR1, we generated mice expressing human TNFR1 in a mouse TNFR1-knockout background (hTNFR1 Tg), and we determined biodistribution of Tc-99m-TROS and effectiveness of TROS in EAE in those mice. Biodistribution analysis demonstrated that intraperitoneally injected TROS is retained more in organs of hTNFR1 Tg mice compared to wild type mice. TROS was also detected in the cerebrospinal fluid (CSF) of hTNFR1 Tg mice. Prophylactic TROS administration significantly delayed disease onset and ameliorated its symptoms. Moreover, treatment initiated early after disease onset prevented further disease development. TROS reduced spinal cord inflammation and neuroinflammation, and preserved myelin and neurons. Collectively, our data illustrate that TNFR1 is a promising therapeutic target in MS

    Functional Analysis of Host Factors that Mediate the Intracellular Lifestyle of Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans (Cn), the major causative agent of human fungal meningoencephalitis, replicates within phagolysosomes of infected host cells. Despite more than a half-century of investigation into host-Cn interactions, host factors that mediate infection by this fungal pathogen remain obscure. Here, we describe the development of a system that employs Drosophila S2 cells and RNA interference (RNAi) to define and characterize Cn host factors. The system recapitulated salient aspects of fungal interactions with mammalian cells, including phagocytosis, intracellular trafficking, replication, cell-to-cell spread and escape of the pathogen from host cells. Fifty-seven evolutionarily conserved host factors were identified using this system, including 29 factors that had not been previously implicated in mediating fungal pathogenesis. Subsequent analysis indicated that Cn exploits host actin cytoskeletal elements, cell surface signaling molecules, and vesicle-mediated transport proteins to establish a replicative niche. Several host molecules known to be associated with autophagy (Atg), including Atg2, Atg5, Atg9 and Pi3K59F (a class III PI3-kinase) were also uncovered in our screen. Small interfering RNA (siRNA) mediated depletion of these autophagy proteins in murine RAW264.7 macrophages demonstrated their requirement during Cn infection, thereby validating findings obtained using the Drosophila S2 cell system. Immunofluorescence confocal microscopy analyses demonstrated that Atg5, LC3, Atg9a were recruited to the vicinity of Cn containing vacuoles (CnCvs) in the early stages of Cn infection. Pharmacological inhibition of autophagy and/or PI3-kinase activity further demonstrated a requirement for autophagy associated host proteins in supporting infection of mammalian cells by Cn. Finally, systematic trafficking studies indicated that CnCVs associated with Atg proteins, including Atg5, Atg9a and LC3, during trafficking to a terminal intracellular compartment that was decorated with the lysosomal markers LAMP-1 and cathepsin D. Our findings validate the utility of the Drosophila S2 cell system as a functional genomic platform for identifying and characterizing host factors that mediate fungal intracellular replication. Our results also support a model in which host Atg proteins mediate Cn intracellular trafficking and replication
    • …
    corecore