11 research outputs found

    Cell-Free RNA from Plasma in Patients with Neuroblastoma: Exploring the Technical and Clinical Potential

    Get PDF
    Neuroblastoma affects mostly young children, bearing a high morbidity and mortality. Liquid biopsies, e.g., molecular analysis of circulating tumor-derived nucleic acids in blood, offer a minimally invasive diagnostic modality. Cell-free RNA (cfRNA) is released by all cells, especially cancer. It circulates in blood packed in extracellular vesicles (EV) or attached to proteins. We studied the feasibility of analyzing cfRNA and EV, isolated by size exclusion chromatography (SEC), from platelet-poor plasma from healthy controls ( n = 40) and neuroblastoma patients with localized ( n = 10) and metastatic disease ( n = 30). The mRNA content was determined using several multiplex droplet digital PCR (ddPCR) assays for a neuroblastoma-specific gene panel ( PHOX2B, TH, CHRNA3) and a cell cycle regulation panel ( E2F1, CDC6, ATAD2, H2AFZ, MCM2, DHFR). We applied corrections for the presence of platelets. We demonstrated that neuroblastoma-specific markers were present in plasma from 14/30 patients with metastatic disease and not in healthy controls and patients with localized disease. Most cell cycle markers had a higher expression in patients. The mRNA markers were mostly present in the EV-enriched SEC fractions. In conclusion, cfRNA can be isolated from plasma and EV and analyzed using multiplex ddPCR. cfRNA is an interesting novel liquid biopsy-based target to explore further

    Stability of PCR Targets for Monitoring Minimal Residual Disease in Neuroblastoma

    No full text
    In neuroblastoma (NB) patients, minimal residual disease (MRD) can be detected by real-time quantitative PCR (qPCR) using NB-specific target genes, such as PHOX2B and TH. However, it is unknown whether the mRNA levels of these targets vary either during treatment or at relapse. If marker genes are not stably expressed, estimation of MRD levels in bone marrow (BM) or peripheral blood will be hampered. We studied the stability of a panel of qPCR markers in primary tumors at diagnosis compared with i) paired metastasis (n = 7), ii) treated (n = 10), and iii) relapse (n = 6) tumors. We also compared relative expression of the targets in iv) primary tumors and BM at diagnosis (n = 17), v) BM and peripheral blood at diagnosis (n = 20), vi) BM at diagnosis and during treatment (n = 26), and vii) BM from different puncture sides (n = 110). Especially at diagnosis, PCR target expression is quite stable. Accurate quantification is possible when expression level can be related to the primary tumor; however, PCR target expression can alter on treatment and at relapse. If the median value of relative expression of a panel of PCR targets is used, most variations due to treatment and outgrowth of subclones level out, allowing for reliable application and quantification of MRD-PCR targets in NB patients. (J Mol Diagn 2012, 14:168-175; DOI: 10.1016/j.jmoldx.2011.12.002

    Detecting Minimal Residual Disease in Neuroblastoma: The Superiority of a Panel of Real-Time Quantitative PCR Markers

    No full text
    BACKGROUND: PCR-based detection of minimal residual disease (MRD) in neuroblastoma (NB) patients can be used for initial staging and monitoring therapy response in bone marrow (BM) and peripheral blood (PB). PHOX2B has been identified as a sensitive and specific MRD marker; however, its expression varies between tumors. Therefore, a panel of markers could increase sensitivity. METHODS: To identify additional MRD markers for NB, we selected genes by comparing SAGE (serial analysis of gene expression) libraries of healthy and NB tissues followed by extensive real-time quantitative PCR (RQ-PCR) testing in samples of tumors (n = 56), control BM (n = 51), PB (n = 37), and cell subsets. The additional value of a panel was determined in 222 NB samples from 82 Dutch stage 4 NB patients (54 diagnosis BM samples, 143 BM samples during/after treatment, and 25 PB samples). RESULTS: We identified 2 panels of specific RQ-PCR markers for MRD detection in NB patients: I for analysis of BM samples (PHOX2B, TH, DDC, CHRNA3, and GAP43) and I for analysis of PB samples (PHOX2B, TH, DDC, DBH, and CHRNA3). These markers all showed high expression in NB tumors and no or low expression in control BM or PB samples. In patients' samples, the PHOX2B marker detected most positive samples. In PB samples, however, 3 of 7 PHOX2B-negative samples were positive for 1 or more markers, and in BM examinations during treatment, 7% (6 of 86) of the PHOX2B-negative samples were positive for another marker. CONCLUSIONS: Because of differences in the sensitivities of the markers in BM and PB, we advise the use of 2 different panels to detect MRD in these compartments. (C) 2009 American Association for Clinical Chemistr

    Improving risk stratification for pediatric patients with rhabdomyosarcoma by molecular detection of disseminated disease

    No full text
    Background Survival of children with rhabdomyosarcoma that suffer from recurrent or progressive disease is poor. Identifying these patients upfront remains challenging, indicating a need for improvement of risk stratification. Detection of tumor-derived mRNA in bone marrow (BM) and peripheral blood (PB) using reverse-transcriptase quantitative PCR (RT-qPCR) is a more sensitive method to detect disseminated disease. We identified a panel of genes to optimize risk stratification by RT-qPCR. Methods Candidate genes were selected using gene expression data from rhabdomyosarcoma and healthy hematological tissues, and a multiplexed RT-qPCR was developed. Significance of molecular disease was determined in a cohort of 99 Dutch patients with rhabdomyosarcoma (72 localized and 27 metastasized) treated according to the EpSSG RMS2005 protocol. Findings We identified the following 11 rhabdomyosarcoma markers: ZIC1, ACTC1, MEGF10, PDLIM3, SNAI2, CDH11, TMEM47, MYOD1, MYOG, PAX3/7-FOXO1. RT-qPCR was performed for this 11-marker panel on BM and PB samples from the patient cohort. Five-year EFS was 35.5% (95%CI 17.5-53.5%) for the 33/99 RNA-positive patients, versus 88.0% (95%CI 78.9-97.2%) for the 66/99 RNA-negative patients (p<0.0001). Five-year OS was 54.8% (95%CI 36.2-73.4%) and 93.7% (95%CI 86.6-100.0%), respectively (p<0.0001). RNA panel-positivity was negatively associated with EFS (Hazard Ratio 9.52 95%CI (3.23-28.02), while the RMS2005 risk group stratification was not, in the multivariate Cox regression model. Interpretation This study shows a strong association between PCR-based detection of disseminated disease at diagnosis with clinical outcome in pediatric patients with rhabdomyosarcoma, also compared to conventional risk stratification. This warrants further validation in prospective trials as additional technique for risk stratification

    Specific and Sensitive Detection of Neuroblastoma mRNA Markers by Multiplex RT-qPCR

    No full text
    mRNA RT-qPCR is shown to be a very sensitive technique to detect minimal residual disease (MRD) in patients with neuroblastoma. Multiple mRNA markers are known to detect heterogeneous neuroblastoma cells in bone marrow (BM) or blood from patients. However, the limited volumes of BM and blood available can hamper the detection of multiple markers. To make optimal use of these samples, we developed a multiplex RT-qPCR for the detection of MRD in neuroblastoma. GUSB and PHOX2B were tested as single markers. The adrenergic markers TH, GAP43, CHRNA3 and DBH and mesenchymal markers POSTN, PRRX1 and FMO3 were tested in multiplex. Using control blood and BM, we established new thresholds for positivity. Comparison of multiplex and singleplex RT-qPCR results from 21 blood and 24 BM samples from neuroblastoma patients demonstrated a comparable sensitivity. With this multiplex RT-qPCR, we are able to test seven different neuroblastoma mRNA markers, which overcomes tumor heterogeneity and improves sensitivity of MRD detection, even in those samples of low RNA quantity. With resources and time being saved, reduction in sample volume and consumables can assist in the introduction of MRD by RT-qPCR into clinical practice

    Whole-genome sequencing identifies patient-specific DNA minimal residual disease markers in neuroblastoma

    No full text
    PCR-based detection of minimal residual disease (MRD) in neuroblastoma is currently based on RNA markers; however, expression of these targets can vary, and only paired-like homeobox 2b has no background expression. We investigated whether chromosomal breakpoints, identified by whole-genome sequencing (WGS), can be used as patient-specific DNA MRD markers. WGS data were used to develop large numbers of real-time PCRs specific for tumors of eight patients. These PCRs were used to quantify chromosomal breakpoints in primary tumor and bone marrow samples. Finally, the DNA breakpoints with the highest abundance were compared with a panel of RNA markers. By WGS we identified 42 chromosomal breakpoints in tumor samples from eight patients and developed specific quantitative real-time PCRs for each breakpoint. The tumor-specific breakpoints were all present in bone marrow at diagnosis. For one patient slight clonal selection was observed in response to treatment. Positivity of DNA MRD markers preceded disease progression in four of five patients; in one patient the RNA markers remained negative. For 16 of 22 samples MRD levels determined by RNA and DNA were comparable and in 6 of 22 samples higher MRD levels were detected by DNA markers. DNA breakpoints used as MRD targets in neuroblastoma are reliable and stable markers. In addition, this technique might be applicable for detecting tumor cells in other types of cance

    PHOX2B Is a Novel and Specific Marker for Minimal Residual Disease Testing in Neuroblastoma

    No full text
    Purpose Polymerase chain reaction (PCR)-based detection of minimal residual disease (MRD) in neuroblastoma can be used to monitor therapy response and to evaluate stem cell harvests. Commonly used PCR markers, tyrosine hydroxylase (TH) and GD2 synthase, have expression in normal tissues, thus limiting MRD detection. To identify a more specific MRD marker, we tested PHOX2B. Patients and Methods To determine PHOX2B, TH, and GD2 synthase expression in normal tissues, it was measured by real-time quantitative PCR in samples of normal bone marrow (BM; n = 51), peripheral blood (PB; n = 37), and peripheral-blood stem cells (PBSCs; n = 24). Then, 289 samples of 101 Dutch patients and 47 samples of 43 German patients were tested for PHOX2B and TH; these samples included 52 tumor, 214 BM, 32 BM, and 38 PBSC harvests. Of the 214 BM samples, 167 were compared with cytology, and 47 BM samples were compared with immunocytology (IC). Results In contrast to TH and GD2 synthase, PHOX2B was not expressed in any of the normal samples. In patient samples, PHOX2B was detected in 32% cytology-negative and in 14% IC-negative samples and in 94% of cytology-positive and in 90% of IC-positive BM samples. Overall, PHOX2B was positive in 43% compared with 31% for TH. In 24% of all samples, TH expression was inconclusive, which is similar to expression found in normal tissues. In 42% of these samples, PHOX2B expression was positive. Conclusion PHOX2B is superior to TH and GD2 synthase in specificity and sensitivity for MRD detection of neuroblastoma by using real-time quantitative PCR. We propose to include PHOX2B in additional prospective MRD studies in neuroblastoma alongside TH and other MRD marker

    Hypermethylated RASSF1A as Circulating Tumor DNA Marker for Disease Monitoring in Neuroblastoma

    No full text
    PURPOSE: Circulating tumor DNA (ctDNA) has been used for disease monitoring in several types of cancer. The aim of our study was to investigate whether ctDNA can be used for response monitoring in neuroblastoma. METHODS: One hundred forty-nine plasma samples from 56 patients were analyzed by quantitative polymerase chain reaction (qPCR) for total cell free DNA (cfDNA; albumin and β-actin) and ctDNA (hypermethylated RASSF1A). ctDNA results were compared with mRNA-based minimal residual disease (qPCR) in bone marrow (BM) and blood and clinical patient characteristics. RESULTS: ctDNA was detected at diagnosis in all patients with high-risk and stage M neuroblastoma and in 3 of 7 patients with localized disease. The levels of ctDNA were highest at diagnosis, decreased during induction therapy, and not detected before or after autologous stem-cell transplantation. At relapse, the amount of ctDNA was comparable to levels at diagnosis. There was an association between ctDNA and blood or BM mRNA, with concordant results when tumor burden was high or no tumor was detected. The discrepancies indicated either low-level BM infiltration (ctDNA negative/mRNA positive) or primary tumor/soft tissue lesions with no BM involvement (ctDNA positive/mRNA negative). CONCLUSION: ctDNA can be used for monitoring disease in patients with neuroblastoma. In high-risk patients and all patients with stage M at diagnosis, ctDNA is present. Our data indicate that at low tumor load, testing of both ctDNA and mRNA increases the sensitivity of molecular disease monitoring. It is likely that ctDNA can originate from both primary tumor and metastases and may be of special interest for disease monitoring in patients who experience relapse in other organs than BM

    Cell-Free RNA from Plasma in Patients with Neuroblastoma: Exploring the Technical and Clinical Potential

    No full text
    Neuroblastoma affects mostly young children, bearing a high morbidity and mortality. Liquid biopsies, e.g., molecular analysis of circulating tumor-derived nucleic acids in blood, offer a minimally invasive diagnostic modality. Cell-free RNA (cfRNA) is released by all cells, especially cancer. It circulates in blood packed in extracellular vesicles (EV) or attached to proteins. We studied the feasibility of analyzing cfRNA and EV, isolated by size exclusion chromatography (SEC), from platelet-poor plasma from healthy controls (n = 40) and neuroblastoma patients with localized (n = 10) and metastatic disease (n = 30). The mRNA content was determined using several multiplex droplet digital PCR (ddPCR) assays for a neuroblastoma-specific gene panel (PHOX2B, TH, CHRNA3) and a cell cycle regulation panel (E2F1, CDC6, ATAD2, H2AFZ, MCM2, DHFR). We applied corrections for the presence of platelets. We demonstrated that neuroblastoma-specific markers were present in plasma from 14/30 patients with metastatic disease and not in healthy controls and patients with localized disease. Most cell cycle markers had a higher expression in patients. The mRNA markers were mostly present in the EV-enriched SEC fractions. In conclusion, cfRNA can be isolated from plasma and EV and analyzed using multiplex ddPCR. cfRNA is an interesting novel liquid biopsy-based target to explore further

    Mesenchymal Neuroblastoma Cells Are Undetected by Current mRNA Marker Panels: The Development of a Specific Neuroblastoma Mesenchymal Minimal Residual Disease Panel

    No full text
    PURPOSE Patients with neuroblastoma in molecular remission remain at considerable risk for disease recurrence. Studies have found that neuroblastoma tissue contains adrenergic (ADRN) and mesenchymal (MES) cells; the latter express low levels of commonly used markers for minimal residual disease (MRD). We identified MES-specific MRD markers and studied the dynamics of these markers during treatment. PATIENTS AND METHODS Microarray data were used to identify genes differentially expressed between ADRN and MES cell lines. Candidate genes were then studied using real-time quantitative polymerase chain reaction in cell lines and control bone marrow and peripheral blood samples. After selecting a panel of markers, serial bone marrow, peripheral blood, and peripheral blood stem cell samples were obtained from patients with high-risk neuroblastoma and tested for marker expression; survival analyses were also performed. RESULTS PRRX1, POSTN, and FMO3 mR NAs were used as a panel for specifically detecting MES mRNA in patient samples. MES mRNA was detected only rarely in peripheral blood; moreover, the presence of MES mRNA in peripheral blood stem cell samples was associated with low event-free survival and overall survival. Of note, during treatment, serial bone marrow samples obtained from 29 patients revealed a difference in dynamics between MES mRNA markers and ADRN mRNA markers. Furthermore, MES mRNA was detected in a higher percentage of patients with recurrent disease than in those who remained disease free (53% v 32%, respectively; p= .03). CONCLUSION We propose that the markers POSTN and PRRX1, in combination with FMO3, be used for real-time quantitative polymerase chain reaction-based detection of MES neuroblastoma mRNA in patient samples because these markers have a unique pattern during treatment and are more prevalent in patients with poor outcome. Together with existing markers of MRD, these new markers should be investigated further in large prospective studies. (C) 2019 by American Society of Clinical Oncolog
    corecore