9 research outputs found

    Cell-Free DNA as a Diagnostic and Prognostic Biomarker in Pediatric Rhabdomyosarcoma.

    Get PDF
    PURPOSE: Total cell-free DNA (cfDNA) and tumor-derived cfDNA (ctDNA) can be used to study tumor-derived genetic aberrations. We analyzed the diagnostic and prognostic potential of cfDNA and ctDNA, obtained from pediatric patients with rhabdomyosarcoma. METHODS: cfDNA was isolated from diagnostic plasma samples from 57 patients enrolled in the EpSSG RMS2005 study. To study the diagnostic potential, shallow whole genome sequencing (shWGS) and cell-free reduced representation bisulphite sequencing (cfRRBS) were performed in a subset of samples and all samples were tested using droplet digital polymerase chain reaction to detect methylated RASSF1A (RASSF1A-M). Correlation with outcome was studied by combining cfDNA RASSF1A-M detection with analysis of our rhabdomyosarcoma-specific RNA panel in paired cellular blood and bone marrow fractions and survival analysis in 56 patients. RESULTS: At diagnosis, ctDNA was detected in 16 of 30 and 24 of 26 patients using shallow whole genome sequencing and cfRRBS, respectively. Furthermore, 21 of 25 samples were correctly classified as embryonal by cfRRBS. RASSF1A-M was detected in 21 of 57 patients. The presence of RASSF1A-M was significantly correlated with poor outcome (the 5-year event-free survival [EFS] rate was 46.2% for 21 RASSF1A-M‒positive patients, compared with 84.9% for 36 RASSF1A-M‒negative patients [P < .001]). RASSF1A-M positivity had the highest prognostic effect among patients with metastatic disease. Patients both negative for RASSF1A-M and the rhabdomyosarcoma-specific RNA panel (28 of 56 patients) had excellent outcome (5-year EFS 92.9%), while double-positive patients (11/56) had poor outcome (5-year EFS 13.6%, P < .001). CONCLUSION: Analyzing ctDNA at diagnosis using various techniques is feasible in pediatric rhabdomyosarcoma and has potential for clinical use. Measuring RASSF1A-M in plasma at initial diagnosis correlated significantly with outcome, particularly when combined with paired analysis of blood and bone marrow using a rhabdomyosarcoma-specific RNA panel

    The prognostic value of fast molecular response of marrow disease in patients aged over 1 year with stage 4 neuroblastoma

    Get PDF
    Quantitative real-time (q)PCR for detection of minimal residual disease (MRD) in children with neuroblastoma (NB) can evaluate molecular bone marrow (BM) response to therapy, but the prognostic value of tumour kinetics in the BM during induction treatment remains to be established. The purpose of this study was to analyse at which time points MRD detection by sequential molecular assessment of BM was prognostic for overall survival (OS). In this single centre study, qPCR was performed with five NB-specific markers: PHOX2B, TH, DDC, GAP43 and CHRNA3, on 106 retrospectively analysed BM samples of 53 patients >1 year with stage 4 neuroblastoma. The prognostic impact of MRD at diagnosis (n = 39), at 3 months after diagnosis (n = 38) and after completing induction chemotherapy (n = 29) was assessed using univariate and bivariate Cox regression analyses. There was no correlation between tumour load at diagnosis and outcome (p = 0.93). Molecular BM remission was observed in 11/38 (29%) of patients at 3 months after diagnosis and associated with favourable outcome (5-y-OS 62 ± 15.0% versus 19 ± 8%; p = 0.009). After completion of induction chemotherapy, BM of 41% (12/29) of the patients was still MRD positive, which was associated with poor outcome (5-y-OS 0% versus 52 ± 12%; p <0.001). For both time points, the prognostic value of molecular response remained significant in bivariate analysis. MRD detection measured by a panel of NB specific-PCR targets could identify fast responders, who clear their BM early during treatment. Fast molecular response was a prognostic factor, associated with better outcome. Our data indicate that MRD analysis during induction therapy should be included in prospective MRD studie
    corecore