95 research outputs found

    Giant two-phonon Raman scattering from nanoscale NbC precipitates in Nb

    Full text link
    High purity niobium (Nb), subjected to the processing methods used in the fabrication of superconducting RF cavities, displays micron-sized surface patches containing excess carbon. High-resolution transmission electron microscopy and electron energy-loss spectroscopy measurements are presented which reveal the presence of nanoscale NbC coherent precipitates in such regions. Raman backscatter spectroscopy on similar surface regions exhibit spectra consistent with the literature results on bulk NbC but with significantly enhanced two-phonon scattering. The unprecedented strength and sharpness of the two-phonon signal has prompted a theoretical analysis, using density functional theory (DFT), of phonon modes in NbC for two different interface models of the coherent precipitate. One model leads to overall compressive strain and a comparison to ab-initio calculations of phonon dispersion curves under uniform compression of the NbC shows that the measured two-phonon peaks are linked directly to phonon anomalies arising from strong electron-phonon interaction. Another model of the extended interface between Nb and NbC, studied by DFT, gives insight into the frequency shifts of the acoustic and optical mode density of states measured by first order Raman. The exact origin of the stronger two-phonon response is not known at present but it suggests the possibility of enhanced electron-phonon coupling in transition metal carbides under strain found either in the bulk NbC inclusions or at their interfaces with Nb metal. Preliminary tunneling studies using a point contact method show some energy gaps larger than expected for bulk NbC.Comment: Phys. Rev. B, accepte

    Inhaled Nitric Oxide as an Adjunctive Treatment for Cerebral Malaria in Children: A Phase II Randomized Open-Label Clinical Trial

    Get PDF
    Background. Children with cerebral malaria (CM) have high rates of mortality and neurologic sequelae. Nitric oxide (NO) metabolite levels in plasma and urine are reduced in CM. Methods. This randomized trial assessed the efficacy of inhaled NO versus nitrogen (N2) as an adjunctive treatment for CM patients receiving intravenous artesunate.We hypothesized that patients treated with NO would have a greater increase of the malaria biomarker, plasma angiopoietin-1 (Ang-1) after 48 hours of treatment. Results. Ninety-two children with CM were randomized to receive either inhaled 80 part per million NO or N2 for 48 or more hours. Plasma Ang-1 levels increased in both treatment groups, but there was no difference between the groups at 48 hours (P = not significant [NS]). Plasma Ang-2 and cytokine levels (tumor necrosis factor-α, interferon- γ, interleukin [IL]-1β, IL-6, IL-10, and monocyte chemoattractant protein-1) decreased between inclusion and 48 hours in both treatment groups, but there was no difference between the groups (P = NS). Nitric oxide metabolite levels—blood methemoglobin and plasma nitrate—increased in patients treated with NO (both P \u3c .05). Seven patients in the N2 group and 4 patients in the NO group died. Five patients in the N2 group and 6 in the NO group had neurological sequelae at hospital discharge. Conclusions. Breathing NO as an adjunctive treatment for CM for a minimum of 48 hours was safe, increased blood methemoglobin and plasma nitrate levels, but did not result in a greater increase of plasma Ang-1 levels at 48 hours

    Identification of a Small Molecule that Increases Hemoglobin Oxygen Affinity and Reduces SS Erythrocyte Sickling

    Get PDF
    Small molecules that increase the oxygen affinity of human hemoglobin may reduce sickling of red blood cells in patients with sickle cell disease. We screened 38 700 compounds using small molecule microarrays and identified 427 molecules that bind to hemoglobin. We developed a high-throughput assay for evaluating the ability of the 427 small molecules to modulate the oxygen affinity of hemoglobin. We identified a novel allosteric effector of hemoglobin, di(5-(2,3-dihydro-1,4-benzodioxin-2-yl)-4H-1,2,4-triazol-3-yl)disulfide (TD-1). TD-1 induced a greater increase in oxygen affinity of human hemoglobin in solution and in red blood cells than did 5-hydroxymethyl-2-furfural (5-HMF), N-ethylmaleimide (NEM), or diformamidine disulfide. The three-dimensional structure of hemoglobin complexed with TD-1 revealed that monomeric units of TD-1 bound covalently to β-Cys93 and β-Cys112, as well as noncovalently to the central water cavity of the hemoglobin tetramer. The binding of TD-1 to hemoglobin stabilized the relaxed state (R3-state) of hemoglobin. TD-1 increased the oxygen affinity of sickle hemoglobin and inhibited in vitro hypoxia-induced sickling of red blood cells in patients with sickle cell disease without causing hemolysis. Our study indicates that TD-1 represents a novel lead molecule for the treatment of patients with sickle cell disease

    Transfusion of blood stored for longer periods of time does not alter the reactive hyperemia index in healthy volunteers

    Get PDF
    Introduction The purpose of this study is to investigate the effects of transfusing human packed red blood cells (PRBC) after prolonged storage, as compared to short storage. Retrospective data suggest that transfusion of PRBC stored for over 2 weeks is associated with increased mortality and morbidity. During storage, PRBC progressively release hemoglobin, which avidly binds nitric oxide (NO). We hypothesized that the NO-mediated hyperemic response following ischemia would be reduced after transfusion of PRBC stored for 40 days. Methods We conducted a cross-over randomized interventional study, enrolling 10 healthy adults. Nine volunteers completed the study; one volunteer could not complete the protocol because of anemia. Each volunteer received 1 unit of 40-day and 1 unit of 3-day stored autologous leukoreduced PRBC, on different study days according to a randomization scheme. Blood withdrawal and reactive hyperemia index (RHI) measurements were performed before and 10 minutes, 1 hour, 2 hours, and 4 hours after transfusion. Results The change of RHI after transfusion of 40-day stored PRBC did not differ as compared to 3-day stored PRBC (P = 0.67). Plasma hemoglobin and bilirubin levels were higher after transfusion of 40-day than after 3-day stored PRBC (P = 0.02 and 0.001, respectively). Plasma levels of potassium, LDH, haptoglobin, cytokines, as well as blood pressure, did not differ between the two transfusions and remained within the normal range. Plasma nitrite concentrations increased after transfusion of 40-day stored PRBC, but not after transfusion of 3-day stored PRBC (P = 0.01). Conclusion Transfusion of 1 unit of autologous PRBC stored for longer periods of time is associated with increased hemolysis, an unchanged RHI and increased levels of plasma nitrite in healthy volunteers
    corecore