804 research outputs found
Electronic Scattering Effects in Europium-Based Iron Pnictides
In a comprehensive study, we investigate the electronic scattering effects in
EuFe(AsP) by using Fourier-transform infrared
spectroscopy. In spite of the fact that Eu local moments order around
\,K, the overall optical response is strikingly similar
to the one of the well-known Ba-122 pnictides. The main difference lies within
the suppression of the lower spin-density-wave gap feature. By analysing our
spectra with a multi-component model, we find that the high-energy feature
around 0.7\,eV -- often associated with Hund's rule coupling -- is highly
sensitive to the spin-density-wave ordering, this further confirms its direct
relationship to the dynamics of itinerant carriers. The same model is also used
to investigate the in-plane anisotropy of magnetically detwinned
EuFeAs in the antiferromagnetically ordered state, yielding a
higher Drude weight and lower scattering rate along the crystallographic
-axis. Finally, we analyse the development of the room temperature spectra
with isovalent phosphor substitution and highlight changes in the scattering
rate of hole-like carriers induced by a Lifshitz transition
Persistent detwinning of iron pnictides by small magnetic fields
Our comprehensive study on EuFeAs reveals a dramatic reduction of
magnetic detwinning fields compared to other AFeAs (A = Ba, Sr, Ca)
iron pnictides by indirect magneto-elastic coupling of the Eu ions. We
find that only 0.1T are sufficient for persistent detwinning below the local
Eu ordering; above = 19K, higher fields are necessary.
Even after the field is switched off, a significant imbalance of twin domains
remains constant up to the structural and electronic phase transition (190K).
This persistent detwinning provides the unique possibility to study the low
temperature electronic in-plane anisotropy of iron pnictides without applying
any symmetrybreaking external force.Comment: accepted by Physical Review Letter
Transport properties of moderately disordered UCuPd
We present a detailed study on the (magneto)transport properties of as-cast
and heat treated material UCuPd. We find a pronounced sample dependence of
the resistivity of as-cast samples, and reproduce the annealing
dependence of . In our study of the Hall effect we determine a metallic
carrier density for all samples, and a temperature dependence of the Hall
constant which is inconsistent with the Skew scattering prediction. The
magnetoresistive response is very small and characteristic for spin disorder
scattering, suggesting that overall the resistivity is controlled mostly by
nonmagnetic scattering processes. We discuss possible sources for the
temperature and field dependence of the transport properties, in particular
with respect to quantum criticality and electronic localization effects.Comment: 11 pages, 9 figures, submitted PR
Unusual giant magnetostriction in the ferrimagnet GdCaMnO
We report an unusual giant linear magnetostrictive effect in the ferrimagnet
GdCaMnO (80 K). Remarkably, the
magnetostriction, negative at high temperature (), becomes
positive below 15 K when the magnetization of the Gd sublattice overcomes the
magnetization of the Mn sublattice. A rather simple model where the magnetic
energy competes against the elastic energy gives a good account of the observed
results and confirms that Gd plays a crucial role in this unusual observation.
Unlike previous works in manganites where only striction associated with 3
Mn orbitals is considered, our results show that the lanthanide 4 orbitals
related striction can be very important too and it cannot be disregarded.Comment: 6 pages, 3 figure
Magnetic structure of CeRhIn_5 as a function of pressure and temperature
We report magnetic neutron-diffraction and electrical resistivity studies on
single crystals of the heavy-fermion antiferromagnet CeRhIn at pressures
up to 2.3 GPa. These experiments show that the staggered moment of Ce and the
incommensurate magnetic structure change weakly with applied pressure up to
1.63 GPa, where resistivity, specific heat and NQR measurements confirm the
presence of bulk superconductivity. This work places new constraints on an
interpretation of the relationship between antiferromagnetism and
unconventional superconductivity in CeRhIn.Comment: 6 pages, 6 figures, submitted to Phys. Rev.
Muon-spin rotation and magnetization studies of chemical and hydrostatic pressure effects in EuFe_{2}(As_{1-x}P_{x})_{2}
The magnetic phase diagram of EuFe(AsP) was
investigated by means of magnetization and muon-spin rotation studies as a
function of chemical (isovalent substitution of As by P) and hydrostatic
pressure. The magnetic phase diagrams of the magnetic ordering of the Eu and Fe
spins with respect to P content and hydrostatic pressure are determined and
discussed. The present investigations reveal that the magnetic coupling between
the Eu and the Fe sublattices strongly depends on chemical and hydrostatic
pressure. It is found that chemical and hydrostatic pressure have a similar
effect on the Eu and Fe magnetic order.Comment: 11 pages, 10 figure
- …