22 research outputs found

    Photovoltaic Devices Using Sublimed Methylammonium Lead Iodide Perovskites: Long-Term Reproducible Processing

    Get PDF
    Fully evaporated solar cells using methylammonium iodide (MAI)-based perovskites can reach power conversion efficiencies exceeding 20%. An important point to advance perovskite photovoltaics is to ensure reproducibility from batch to batch. Sublimation control of organic ammonium halides is critical in achieving this for evaporated perovskite solar cells. Herein, a reproducible procedure for the coevaporation of PbI2 and MAI based on an evaporator chamber setup with only two quartz crystal microbalances (QCMs) is described. One QCM monitors exclusively the PbI2 precursor (PbI2-QCM) and the second QCM monitors the total amount of MAPbI3 mass reaching the substrates (MAPbI3-QCM). It is shown that the MAI evaporation can be reliably monitored, indirectly, through the MAPbI3-QCM. In this way, the fluctuating sublimation rates usually observed due to variations of MAI purity are avoided. This allows one to obtain consistently high-performing solar cells over a period of one and a half years

    Transparent Light-Emitting Electrochemical Cells

    Get PDF
    Single layer light-emitting electrochemical cells (LECs) are amongst the simplest electroluminescent devices and operate with air-stable electrodes. Transparent light-emitting devices are of great interest as they can enable new applications in consumer electronics. In this work, a transparent ionic transition metal complex based LEC is fabricated by developing a transparent top contact based on tin (IV) oxide (SnO2) and indium-tin oxide, processed by low-temperature atomic layer deposition and pulsed laser deposition, respectively. The resulting devices present transparency in excess of 75% over the full visible spectrum (380-750 nm), with 82% transmission at the emission peak (563 nm). The devices emit from the front and the rear with high luminance (260 cd m−2) and long lifetime (176 h). These parameters place them among the highest performing single layer transparent electroluminescent devices

    Crystal Reorientation and Amorphization Induced by Stressing Efficient and Stable P-I-N Vacuum-Processed MAPbI3 Perovskite Solar Cells

    Get PDF
    Herein, the long‐term stability of vacuum‐deposited methylammonium lead iodide (MAPbI3) perovskite solar cells (PSCs) with power conversion efficiencies (PCEs) of around 19% is evaluated. A low‐temperature atomic layer deposition (ALD) Al2O3 coating is developed and used to protect the MAPbI3 layers and the solar cells from environmental agents. The ALD encapsulation enables the MAPbI3 to be exposed to temperatures as high as 150 °C for several hours without change in color. It also improves the thermal stability of the solar cells, which maintain 80% of the initial PCEs after aging for ≈40 and 37 days at 65 and 85 °C, respectively. However, room‐temperature operation of the solar cells under 1 sun illumination leads to a loss of 20% of their initial PCE in 230 h. Due to the very thin ALD Al2O3 encapsulation, X‐ray diffraction can be performed on the MAPbI3 films and completed solar cells before and after the different stress conditions. Surprisingly, it is found that the main effect of light soaking and thermal stress is a crystal reorientation with respect to the substrate from (002) to (202) of the perovskite layer, and that this reorientation is accelerated under illumination

    Efficient Vacuum Deposited P-I-N Perovskite Solar Cells by Front Contact Optimization

    Get PDF
    Hole transport layers (HTLs) are of fundamental importance in perovskite solar cells (PSCs), as they must ensure an efficient and selective hole extraction, and ohmic charge transfer to the corresponding electrodes. In p-i-n solar cells, the ITO/HTL is usually not ohmic, and an additional interlayer such as MoO3 is usually placed in between the two materials by vacuum sublimation. In this work, we evaluated the properties of the MoO3/TaTm (TaTm is the HTL N4,N4,N4″,N4″-tetra([1,1′-biphenyl]-4-yl)-[1,1′:4′,1″-terphenyl]-4,4″-diamine) hole extraction interface by selectively annealing either MoO3 (prior to the deposition of TaTm) or the bilayer MoO3/TaTm (without pre-treatment on the MoO3), at temperature ranging from 60 to 200°C. We then used these p-contacts for the fabrication of a large batch of fully vacuum deposited PSCs, using methylammonium lead iodide as the active layer. We show that annealing the MoO3/TaTm bilayers at high temperature is crucial to obtain high rectification with low non-radiative recombination, due to an increase of the electrode work function and the formation of an ohmic interface with TaTm

    Molecular Passivation of MoO3: Band Alignment and Protection of Charge Transport Layers in Vacuum-Deposited Perovskite Solar Cells

    Get PDF
    Vacuum-deposition of perovskite solar cells can achieve efficiencies rivalling solution-based methods and it allows for more complex device stacks. MoO3 has been used to enhance carrier extraction to the transparent bottom electrode in a p-i-n configuration, here we show that by inserting an organic charge transport molecule it can also be used on the top of a perovskite absorber in a n-i-p configuration. This strategy enables the first vacuum-deposited perovskite solar cells with metal oxides as charge transporting layers for both electrons and holes leading to power conversion efficiency > 19 %

    Vacuum-Deposited Microcavity Perovskite Photovoltaic Devices

    Get PDF
    The interaction between semiconductor materials and electromagnetic fields resonating in microcavities or the light−matter coupling is of both fundamental and practical significance for improving the performance of various photonic technologies. The demonstration of light−matter coupling effects in the emerging perovskite-based optoelectronic devices via optical pumping and electrical readout (e.g., photovoltaics) and vice versa (e.g., lightemitting diodes), however, is still scarce. Here, we demonstrate the microcavity formation in vacuum-deposited methylammonium lead iodide (CH3NH3PbI3, MAPI) p-i-n photovoltaic devices fabricated between two reflecting silver electrodes. We tune the position of the microcavity mode across MAPI's absorption edge and study the effect on the microcavity absorption enhancement. Tuning the microcavity mode toward lower energies enhances the absorption of the lower energy photons and steepens the absorption onset which reduces the effective optical gap (Eg) of the devices. This leads to a reduction in the open circuit voltage deficit

    Use of Hydrogen Molybdenum Bronze in Vacuum‐Deposited Perovskite Solar Cells

    Get PDF
    Herein, the dehydration of a hydrogen molybdenum bronze (HYMoO3), converting it to molybdenum oxide (MoOX), is explored toward the development of perovskite solar cells (PSCs) for the first time. H0.11MoO3 bronze is synthesized, characterized, and deposited on indium tin oxide (ITO) under different concentrations and annealing conditions for in situ conversion into MoOX with appropriate oxygen vacancies. Vacuum‐deposited PSCs are fabricated using the as‐produced MoOX hole injection layers, achieving a power conversion efficiency of 17.3% (average) for the optimal device. The latter has its stability and reproducibility tested, proving the robustness and affordability of the developed hole transport layer in PSCs

    Tin(IV) Oxide Electron Transport Layer via Industrial-Scale Pulsed Laser Deposition for Planar Perovskite Solar Cells

    Get PDF
    Electron transport layers (ETL) based on tin(IV) oxide (SnO2) are recurrently employed in perovskite solar cells (PSCs) by many deposition techniques. Pulsed laser deposition (PLD) offers a few advantages for the fabrication of such layers, such as being compatible with large scale, patternable, and allowing deposition at fast rates. However, a precise understanding of how the deposition parameters can affect the SnO2 film, and as a consequence the solar cell performance, is needed. Herein, we use a PLD tool equipped with a droplet trap to minimize the number of excess particles (originated from debris) reaching the substrate, and we show how to control the PLD chamber pressure to obtain surfaces with very low roughness and how the concentration of oxygen in the background gas can affect the number of oxygen vacancies in the film. Using optimized deposition conditions, we obtained solar cells in the n¿i¿p configuration employing methylammonium lead iodide perovskite as the absorber layer with power conversion efficiencies exceeding 18% and identical performance to devices having the more typical atomic layer deposited SnO2 ETL

    Wafer-scale pulsed laser deposition of ITO for solar cells: reduced damage vs. interfacial resistance

    Get PDF
    Transparent conducting oxides (TCOs) used in solar cells must be optimized to achieve minimum parasitic absorption losses while providing sufficient lateral conductivity. Low contact resistance with the adjacent device layers and low damage to the substrate during deposition of the TCO are also important requirements to ensure high solar cell efficiencies. Pulsed laser deposition (PLD) has been proposed as an alternative low-damage TCO deposition technique on top of sensitive layers and interfaces in organic and perovskite solar cells but is yet to be studied for the more mature silicon technology. Focusing on the PLD deposition pressure as the key parameter to reduce damage, we developed tin-doped indium oxide (ITO) with a sheet resistance of 60 Ω □−1 at different pressures and implemented it in silicon heterojunction (SHJ) solar cells. Buffer-free semi-transparent perovskite cells with the same PLD ITO electrodes were also fabricated for comparison. While in the perovskite cells increased ITO deposition pressure leads to an improved open circuit voltage and fill factor indicative of damage reduction, SHJ cells with PLD ITO at all conditions maintained a high passivation quality, but increased pressures lead to high series resistance. Transmission electron microscopy and time-of-flight secondary ion mass spectrometry confirmed the formation of a parasitic SiOx at the ITO/a-Si:H interface of the SHJ cell causing a transport barrier. The optimized ITO films with the highest carrier density were able to obtain >21% SHJ efficiency with 75 nm-thick PLD ITO. Moreover, reducing the ITO thickness to ∼45 nm and using TiOx for optical compensation enables fabrication of SHJ devices with reduced indium consumption and efficiencies of >22%

    Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient, and Frequency Domain

    Get PDF
    A variety of experiments on vacuum-deposited methylammonium lead iodide perovskite solar cells are presented, including JV curves with different scan rates, light intensity-dependent open-circuit voltage, impedance spectra, intensity-modulated photocurrent spectra, transient photocurrents, and transient voltage step responses. All these experimental data sets are successfully reproduced by a charge drift-diffusion simulation model incorporating mobile ions and charge traps using a single set of parameters. While previous modeling studies focused on a single experimental technique, we combine steady-state, transient, and frequency-domain simulations and measurements. Our study is an important step toward quantitative simulation of perovskite solar cells, leading to a deeper understanding of the physical effects in these materials. The analysis of the transient current upon voltage turn-on in the dark reveals that the charge injection properties of the interfaces are triggered by the accumulation of mobile ionic defects. We show that the current rise of voltage step experiments allow for conclusions about the recombination at the interface. Whether one or two mobile ionic species are used in the model has only a minor influence on the observed effects. A delayed current rise observed upon reversing the bias from +3 to -3 V in the dark cannot be reproduced yet by our drift-diffusion model. We speculate that a reversible chemical reaction of mobile ions with the contact material may be the cause of this effect, thus requiring a future model extension. A parameter variation is performed in order to understand the performance-limiting factors of the device under investigation
    corecore