35 research outputs found

    Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.

    Get PDF
    BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice

    Allotransplanted Neurons Used to Repair Peripheral Nerve Injury Do Not Elicit Overt Immunogenicity

    Get PDF
    A major problem hindering the development of autograft alternatives for repairing peripheral nerve injuries is immunogenicity. We have previously shown successful regeneration in transected rat sciatic nerves using conduits filled with allogeneic dorsal root ganglion (DRG) cells without any immunosuppression. In this study, we re-examined the immunogenicity of our DRG neuron implanted conduits as a potential strategy to overcome transplant rejection. A biodegradable NeuraGen® tube was infused with pure DRG neurons or Schwann cells cultured from a rat strain differing from the host rats and used to repair 8 mm gaps in the sciatic nerve. We observed enhanced regeneration with allogeneic cells compared to empty conduits 16 weeks post-surgery, but morphological analyses suggest recovery comparable to the healthy nerves was not achieved. The degree of regeneration was indistinguishable between DRG and Schwann cell allografts although immunogenicity assessments revealed substantially increased presence of Interferon gamma (IFN-γ) in Schwann cell allografts compared to the DRG allografts by two weeks post-surgery. Macrophage infiltration of the regenerated nerve graft in the DRG group 16 weeks post-surgery was below the level of the empty conduit (0.56 fold change from NG; p<0.05) while the Schwann cell group revealed significantly higher counts (1.29 fold change from NG; p<0.001). Major histocompatibility complex I (MHC I) molecules were present in significantly increased levels in the DRG and Schwann cell allograft groups compared to the hollow NG conduit and the Sham healthy nerve. Our results confirmed previous studies that have reported Schwann cells as being immunogenic, likely due to MHC I expression. Nerve gap injuries are difficult to repair; our data suggest that DRG neurons are superior medium to implant inside conduit tubes due to reduced immunogenicity and represent a potential treatment strategy that could be preferable to the current gold standard of autologous nerve transplant

    A Potential Role for Shed Soluble Major Histocompatibility Class I Molecules as Modulators of Neurite Outgrowth

    Get PDF
    The neurobiological activities of classical major histocompatibility class I (MHCI) molecules are just beginning to be explored. To further examine MHCI's actions during the formation of neuronal connections, we cultured embryonic mouse retina explants a short distance from wildtype thalamic explants, or thalami from transgenic mice (termed “NSE-Db”) whose neurons express higher levels of MHCI. While retina neurites extended to form connections with wildtype thalami, we were surprised to find that retina neurite outgrowth was very stunted in regions proximal to NSE-Db thalamic explants, suggesting that a diffusible factor from these thalami inhibited retina neurite outgrowth. It has been long known that MHCI-expressing cells release soluble forms of MHCI (sMHCI) due to the shedding of intact MHCI molecules, as well as the alternative exon splicing of its heavy chain or the action proteases which cleave off it's transmembrane anchor. We show that the diffusible inhibitory factor from the NSE-Db thalami is sMHCI. We also show that COS cells programmed to express murine MHCI release sMHCI that inhibits neurite outgrowth from nearby neurons in vitro. The neuroinhibitory effect of sMHCI could be blocked by lowering cAMP levels, suggesting that the neuronal MHCI receptor's signaling mechanism involves a cyclic nucleotide-dependent pathway. Our results suggest that MHCI may not only have neurobiological activity in its membrane-bound form, it may also influence local neurons as a soluble molecule. We discuss the involvement of complement proteins in generating sMHCI and new theoretical models of MHCI's biological activities in the nervous system

    Phagocytosis of Microglia in the Central Nervous System Diseases

    Get PDF

    MHC I upregulation influences astroglial reaction and synaptic plasticity in the spinal cord after sciatic nerve transection

    No full text
    Recent studies suggested that the MHC class I expression has an important role on the maintenance of synaptic connections and also on neuronal/glial communication. IFN beta is a cytokine that influences the MHC class I expression. Therefore, the present work studied the effects of IFN beta on astrocyte reactivity and synaptic plasticity in the spinal cord. C57BL/6J adult mice were subjected to unilateral sciatic nerve transection after being treated with 10,000 IU of IFN beta for I week. Following axotomy, they were kept under treatment for another week. After that, the animals were sacrificed and the lumbar spinal cords were processed for immunohistochemistry and electron microscopy. Placebo and non-treated axotomized groups were used as controls. The results showed an upregulation of GFAP expression in the lesioned spinal cord segments, especially in the IFN treated group. Interestingly, IFN treated animals, showed a grater MHC class I expression coupled with a decrease of synapthophysin immunoreactivity. The ultrastructure of synapses showed a larger pruning of presynaptic terminals in contact with alpha motoneurons, induced by axotomy plus IFN beta treatment. In vitro, primary cultures of astrocytes were treated during I week with IFN (nontreated, 100, 500 and 1000 IU/ml) and processed for immumohistochemistry (GFAP, ezrin and OX-18). They showed a sharp upregulation of GFAP, mostly when subjected to 500 and 1000 IU. The present results reinforce the role of MHC class I upregulation on the response to injury, both in vivo and in vitro. (c) 2006 Elsevier Inc. All rights reserved.200252153

    Interferon beta and glatiramer acetate induce proliferation of Schwann cells in vitro

    No full text
    Techniques as well as substances capable of stimulating cultured Schwann cell (SC) proliferation are needed for future therapeutical applications. In this work, the effects of interferon beta (IFNbeta) and glatiramer acetate (GA) on SC cultures were tested, with interest on the growth curve and potential proliferative effects. Primary cultures were prepared from the sciatic nerves of neonatal rats and seeded onto culture plates. Such cells were then subjected to treatment with different doses of IFN beta (100, 500 and 1000 IU/ml) and of GA (1.2, 2.5 and 5.0 mu g/ml) for five consecutive days. S 1000 and DAPI double labeling was used in order to confirm the purity of the cultures. Both treatment with IFN and GA resulted in an increased number of cultured SCs. However, only IFN beta induced a statistically significant proliferative outcome. Such results indicate that addition of IFN beta to the culture medium is efficient in order to improve SC proliferation in vitro.69114615

    Major Histocompatability Complex Class I Expression and Glial Reaction Influence Spinal Motoneuron Synaptic Plasticity During the Course of Experimental Autoimmune Encephalomyelitis

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Recent studies have shown that major histocompatibility complex class I (MHC I) expression directly influences the stability of nerve terminals. Also, the acute phase of experimental autoimmune encephalomyelitis (EAE) has shown a significant impact on inputs within the spinal cord. Therefore, the present work investigated the synaptic covering of motoneurons during the induction phase of disease and progressive remissions of EAE. EAE was induced in C57BL/6J mice, which were divided into four groups: normal, peak disease, first remission, and second remission. The animals were killed and their lumbar spinal cords processed for in situ hybridization (IH), immunohistochemistry, and transmission electron microscopy (TEM). The results indicated an increase in glial reaction during the peak disease. During this period, the TEM analysis showed a reduction in the synaptic covering of the motoneurons, corresponding to a reduction in synaptophysin immunolabeling and an increase in the MHC I expression. The IH analysis reinforced the immunolabeling results, revealing an increased expression of MHC I mRNA by motoneurons and nonneuronal cells during the peak disease and first remission. The results observed in both remission groups indicated a return of the terminals to make contact with the motoneuron surface. The ratio between excitatory and inhibitory inputs increased, indicating the potential for development of an excitotoxic process. In conclusion, the results presented here indicate that MHC I up-regulation during the course of EAE correlates with the periods of synaptic plasticity induced by the infiltration of autoreactive immune cells and that synaptic plasticity decreases after recurrent peaks of inflammation. J. Comp. Neurol. 518:990-1007, 2010. (C) 2009 Wiley-Liss, Inc.51879901007Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2006/05055-4, 2007/03645-1, 2009/16879-6]CNPq [304834/2006-8
    corecore