938 research outputs found
Model checking programmable router configurations
Programmable networks offer the ability to customize router behaviour at run time, thus increasing flexibility of network administration. Programmable network routers are configured using domain-specific languages. In this paper, we describe our approach to defining the syntax and semantics of such a domain-specific language. The ability to evolve router programs dynamically creates potential for misconfigurations. By exploiting domain-specific abstractions, we are able to translate router configurations into Promela and validate them using the Spin model checker, thus providing reasoning support for our domain-specific language. To evaluate our approach we use our configuration language to express the IETF's Differentiated Services specification and show that industrial-sized DiffServ router configurations can be validated using Spin on a standard PC. © 2010 Springer-Verlag Berlin Heidelberg
Gravitational Wave Burst Source Direction Estimation using Time and Amplitude Information
In this article we study two problems that arise when using timing and
amplitude estimates from a network of interferometers (IFOs) to evaluate the
direction of an incident gravitational wave burst (GWB). First, we discuss an
angular bias in the least squares timing-based approach that becomes
increasingly relevant for moderate to low signal-to-noise ratios. We show how
estimates of the arrival time uncertainties in each detector can be used to
correct this bias. We also introduce a stand alone parameter estimation
algorithm that can improve the arrival time estimation and provide
root-sum-squared strain amplitude (hrss) values for each site. In the second
part of the paper we discuss how to resolve the directional ambiguity that
arises from observations in three non co-located interferometers between the
true source location and its mirror image across the plane containing the
detectors. We introduce a new, exact relationship among the hrss values at the
three sites that, for sufficiently large signal amplitudes, determines the true
source direction regardless of whether or not the signal is linearly polarized.
Both the algorithm estimating arrival times, arrival time uncertainties, and
hrss values and the directional follow-up can be applied to any set of
gravitational wave candidates observed in a network of three non co-located
interferometers. As a case study we test the methods on simulated waveforms
embedded in simulations of the noise of the LIGO and Virgo detectors at design
sensitivity.Comment: 10 pages, 14 figures, submitted to PR
Application of asymptotic expansions of maximum likelihood estimators errors to gravitational waves from binary mergers: the single interferometer case
In this paper we describe a new methodology to calculate analytically the
error for a maximum likelihood estimate (MLE) for physical parameters from
Gravitational wave signals. All the existing litterature focuses on the usage
of the Cramer Rao Lower bounds (CRLB) as a mean to approximate the errors for
large signal to noise ratios. We show here how the variance and the bias of a
MLE estimate can be expressed instead in inverse powers of the signal to noise
ratios where the first order in the variance expansion is the CRLB. As an
application we compute the second order of the variance and bias for MLE of
physical parameters from the inspiral phase of binary mergers and for noises of
gravitational wave interferometers . We also compare the improved error
estimate with existing numerical estimates. The value of the second order of
the variance expansions allows to get error predictions closer to what is
observed in numerical simulations. It also predicts correctly the necessary SNR
to approximate the error with the CRLB and provides new insight on the
relationship between waveform properties SNR and estimation errors. For example
the timing match filtering becomes optimal only if the SNR is larger than the
kurtosis of the gravitational wave spectrum
A First Comparison Between LIGO and Virgo Inspiral Search Pipelines
This article reports on a project that is the first step the LIGO Scientific
Collaboration and the Virgo Collaboration have taken to prepare for the mutual
search for inspiral signals. The project involved comparing the analysis
pipelines of the two collaborations on data sets prepared by both sides,
containing simulated noise and injected events. The ability of the pipelines to
detect the injected events was checked, and a first comparison of how the
parameters of the events were recovered has been completed.Comment: GWDAW-9 proceeding
A first comparison of search methods for gravitational wave bursts using LIGO and Virgo simulated data
We present a comparative study of 6 search methods for gravitational wave
bursts using simulated LIGO and Virgo noise data. The data's spectra were
chosen to follow the design sensitivity of the two 4km LIGO interferometers and
the 3km Virgo interferometer. The searches were applied on replicas of the data
sets to which 8 different signals were injected. Three figures of merit were
employed in this analysis: (a) Receiver Operator Characteristic curves, (b)
necessary signal to noise ratios for the searches to achieve 50 percent and 90
percent efficiencies, and (c) variance and bias for the estimation of the
arrival time of a gravitational wave burst.Comment: GWDAW9 proceeding
Flavonoid content of selected foods – A comparison of four international composition tables
The content of flavonoids, widely found in plant-based foods, might differ depending on which food composition table (FCT) is being used. In this study, we investigated the variation and comparability in the flavonoid content of selected foods across four international food composition tables. Flavonoid estimates were derived for all foods available in each table, and comparisons were carried out for foods common between tables. Bias percentage, 95 % limits of agreement, and intra-class correlation coefficients (ICCs; 95 % confidence intervals [95 %CI]) were estimated. Phenol-Explorer and Indian FCT showed moderate level of agreement for total flavonoid (ICC 0.50 and 0.57 respectively) when compared to the USDA table. eBASIS for total flavonoids and anthocyanidins (ICC 0.67 and 0.85, respectively), and Indian FCT for flavanols and flavanones (ICC 0.71 and ICC 0.85, respectively) showed moderate-to-good level of agreement, and low level of agreement for other subclasses when compared to Phenol Explorer. Several flavonoid subclasses showed low to moderate levels of agreement between FCTs, whilst others (including total flavonoid intake) had lower levels of agreement. Methodological approaches in the measurement of flavonoid content of foods across tables, and continued efforts to improve harmonization of these databases would contribute to improve quantification of flavonoid content. © 2024 The Authors"We are grateful to the National Institute of Nutrition in Hyderabad and to the e-BASIS Consortium for supporting this research and for facilitating access to their food composition tables and for answering queries related to their content. M.A.A. gratefully acknowledges the ‘Emerging Leaders in Nutrition Science Award’ by the American Society of Nutrition (ASN) for the presentation of an abstract with preliminary results from this manuscript; and The Barbara and Richard Hall Student Award for Excellence in Nutrition Science, conferred by the Center for Human Nutrition at the Johns Hopkins Bloomberg School of Public Health.
MAA received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754345-INVITE. The UK’s Medical Research Council (MR/R011192/1) funds the BOLD Study.
Environmental pre-exploitation monitoring of Torre Alfina geothermal system (Central Italy)
An interesting project of geothermal pilot plant, with no-gas emission in atmosphere, has been submitted for approval in the medium-enthalpy geothermal field of Torre Alfina. This prompted us to develop a geochemical and geophysical monitoring of the area with the aim of establishing a background information to reco-gnize anomalous gas emission, induced seismicity and subsidence, possibly related to the field exploitation. The exploration conducted by Enel in the years ‘70 - '80, including the drilling of 9 deep wells, has shown the existence of a medium-enthalpy geothermal field in the Torre Alfina zone, in central Italy. The area has been affected by a very complex geological evolution during the Neogene. It was affected by the Quaternary volcanism of the Tyrrhenian margin which, reached its climax between 0.6 and 0.3 Ma. The present stress field around Quaternary volcanoes of central Italy has a NE to ENE direction of extension, in agreement with the alignment of Quaternary volcanoes and earthquake fault plane solutions, with T axes preferentially oriented between NE and ENE.PublishedPrague, Czech Republic, June 22 to July 2, 20156T. Sismicità indotta e caratterizzazione sismica dei sistemi naturaliope
LOOC UP: Locating and observing optical counterparts to gravitational wave bursts
Gravitational wave (GW) bursts (short duration signals) are expected to be
associated with highly energetic astrophysical processes. With such high
energies present, it is likely these astrophysical events will have signatures
in the EM spectrum as well as in gravitational radiation. We have initiated a
program, "Locating and Observing Optical Counterparts to Unmodeled Pulses in
Gravitational Waves" (LOOC UP) to promptly search for counterparts to GW burst
candidates. The proposed method analyzes near real-time data from the
LIGO-Virgo network, and then uses a telescope network to seek optical-transient
counterparts to candidate GW signals. We carried out a pilot study using
S5/VSR1 data from the LIGO-Virgo network to develop methods and software tools
for such a search. We will present the method, with an emphasis on the
potential for such a search to be carried out during the next science run of
LIGO and Virgo, expected to begin in 2009.Comment: 11 pages, 2 figures; v2) added acknowledgments, additional
references, and minor text changes v3) added 1 figure, additional references,
and minor text changes. v4) Updated references and acknowledgments. To be
published in the GWDAW 12 Conf. Proc. by Classical and Quantum Gravit
Environmental pre-exploitation monitoring of Torre Alfina geothermal system (Central Italy)
An interesting project of geothermal pilot plant, with no-gas emission in atmosphere, has been submitted for approval in the medium-enthalpy geothermal field of Torre Alfina. This prompted us to develop a geochemical and geophysical monitoring of the area with the aim of establishing a background information to reco-gnize anomalous gas emission, induced seismicity and subsidence, possibly related to the field exploitation. The exploration conducted by Enel in the years ‘70 - '80, including the drilling of 9 deep wells, has shown the existence of a medium-enthalpy geothermal field in the Torre Alfina zone, in central Italy. The area has been affected by a very complex geological evolution during the Neogene. It was affected by the Quaternary volcanism of the Tyrrhenian margin which, reached its climax between 0.6 and 0.3 Ma. The present stress field around Quaternary volcanoes of central Italy has a NE to ENE direction of extension, in agreement with the alignment of Quaternary volcanoes and earthquake fault plane solutions, with T axes preferentially oriented between NE and ENE
- …