24 research outputs found

    The Dimorphos ejecta plume properties revealed by LICIACube

    Get PDF
    The Double Asteroid Redirection Test (DART) had an impact with Dimorphos (a satellite of the asteroid Didymos) on 26 September 20221. Ground-based observations showed that the Didymos system brightened by a factor of 8.3 after the impact because of ejecta, returning to the pre-impact brightness 23.7 days afterwards2. Hubble Space Telescope observations made from 15 minutes after impact to 18.5 days after, with a spatial resolution of 2.1 kilometres per pixel, showed a complex evolution of the ejecta3, consistent with other asteroid impact events. The momentum enhancement factor, determined using the measured binary period change4, ranges between 2.2 and 4.9, depending on the assumptions about the mass and density of Dimorphos5. Here we report observations from the LUKE and LEIA instruments on the LICIACube cube satellite, which was deployed 15 days in advance of the impact of DART. Data were taken from 71 seconds before the impact until 320 seconds afterwards. The ejecta plume was a cone with an aperture angle of 140 ± 4 degrees. The inner region of the plume was blue, becoming redder with increasing distance from Dimorphos. The ejecta plume exhibited a complex and inhomogeneous structure, characterized by filaments, dust grains and single or clustered boulders. The ejecta velocities ranged from a few tens of metres per second to about 500 metres per second.This work was supported by the Italian Space Agency (ASI) in the LICIACube project (ASI-INAF agreement AC no. 2019-31-HH.0) and by the DART mission, NASA contract 80MSFC20D0004. M.Z. acknowledges Caltech and the Jet Propulsion Laboratory for granting the University of Bologna a licence to an executable version of MONTE Project Edition software. M.Z. is grateful to D. Lubey, M. Smith, D. Mages, C. Hollenberg and S. Bhaskaran of NASA/JPL for the discussions and suggestions regarding the operational navigation of LICIACube. G.P. acknowledges financial support from the Centre national d’études spatiales (CNES, France). A.C.B. acknowledges funding by the NEO-MAPP project (grant agreement 870377, EC H2020-SPACE-2019) and by the Ministerio de Ciencia Innovación (PGC 2018) RTI2018-099464-B-I00. F.F. acknowledges funding from the Swiss National Science Foundation (SNSF) Ambizione (grant no. 193346). J.-Y.L. acknowledges the support from the NASA DART Participating Scientist Program (grant no. 80NSSC21K1131). S.D.R. and M.J. acknowledge support from the Swiss National Science Foundation (project no. 200021_207359)

    Achievement of the planetary defense investigations of the Double Asteroid Redirection Test (DART) mission

    Get PDF
    NASA's Double Asteroid Redirection Test (DART) mission was the first to demonstrate asteroid deflection, and the mission's Level 1 requirements guided its planetary defense investigations. Here, we summarize DART's achievement of those requirements. On 2022 September 26, the DART spacecraft impacted Dimorphos, the secondary member of the Didymos near-Earth asteroid binary system, demonstrating an autonomously navigated kinetic impact into an asteroid with limited prior knowledge for planetary defense. Months of subsequent Earth-based observations showed that the binary orbital period was changed by –33.24 minutes, with two independent analysis methods each reporting a 1σ uncertainty of 1.4 s. Dynamical models determined that the momentum enhancement factor, β, resulting from DART's kinetic impact test is between 2.4 and 4.9, depending on the mass of Dimorphos, which remains the largest source of uncertainty. Over five dozen telescopes across the globe and in space, along with the Light Italian CubeSat for Imaging of Asteroids, have contributed to DART's investigations. These combined investigations have addressed topics related to the ejecta, dynamics, impact event, and properties of both asteroids in the binary system. A year following DART's successful impact into Dimorphos, the mission has achieved its planetary defense requirements, although work to further understand DART's kinetic impact test and the Didymos system will continue. In particular, ESA's Hera mission is planned to perform extensive measurements in 2027 during its rendezvous with the Didymos–Dimorphos system, building on DART to advance our knowledge and continue the ongoing international collaboration for planetary defense

    Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7

    No full text
    In the present study, the response of Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7 to various stress conditions and several antimicrobials was examined by PM in relation with genetic determinants, as revealed by annotation analysis of the two genomes. Comparison between metabolic activities and genetic features of BCP1 and R7 provided new insight into the environmental persistence of these two members of the genus Rhodococcus

    Genome and Phenotype Microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: genetic determinants and metabolic abilities with environmental relevance

    Get PDF
    In this paper comparative genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7 were performed. Rhodococcus sp. BCP1 was selected for its ability to grow on short-chain n-alkanes and R. opacus R7 was isolated for its ability to grow on naphthalene and on o-xylene. Results of genome comparison, includ- ing BCP1, R7, along with other Rhodococcus reference strains, showed that at least 30% of the genome of each strain presented unique sequences and only 50% of the predicted proteome was shared. To associate genomic features with metabolic capabilities of BCP1 and R7 strains, hundreds of different growth conditions were tested through Phenotype Microarray, by using Biolog plates and plates manually prepared with additional xenobiotic compounds. Around one-third of the surveyed carbon sources was utilized by both strains although R7 generally showed higher metabolic activity values compared to BCP1. More- over, R7 showed broader range of nitrogen and sulphur sources. Phenotype Microarray data were combined with genomic analysis to genetically support the metabolic features of the two strains. The genome analysis allowed to identify some gene clusters involved in the metabolism of the main tested xenobiotic compounds. Results show that R7 contains multi- ple genes for the degradation of a large set of aromatic and PAHs compounds, while a lower variability in terms of genes predicted to be involved in aromatic degradation was found in BCP1. This genetic feature can be related to the strong genetic pressure exerted by the two different environment from which the two strains were isolated. According to this, in the BCP1 genome the smo gene cluster involved in the short-chain n-alkanes degradation, is included in one of the unique regions and it is not conserved in the Rhodo- coccus strains compared in this work. Data obtained underline the great potential of these two Rhodococcus spp. strains for biodegradation and environmental decontamination processes

    Endothelial Dysfunction in Patients with Advanced Heart Failure Treated with Levosimendan Periodic Infusion Compared with Optimal Medical Therapy: A Pilot Study

    No full text
    Endothelial dysfunction (ED) is frequently found in patients with heart failure (HF). Among several pharmacological agents reported to improve endothelial function, levosimendan seems to be a promising one, even though, to date, only two previously published studies have evaluated its effects on ED in these patients. The aim of our pilot study was to further investigate the role of periodic levosimendan infusion on endothelial function in patients affected by advanced HF. In this cross-sectional study, three different groups were enrolled: 20 patients with advanced HF treated with periodic levosimendan (LEVO), 20 patients with HF on optimal medical therapy (OMT), and 20 healthy subjects (control group). ED was evaluated through flow-mediated dilation (FMD) at the level of the brachial artery. The three groups presented similar ages with significant differences in gender distribution, systolic blood pressure, and chronic kidney disease (eGFR < 30 mL/min). In HF patients, ischaemic aetiology was more prevalent in the LEVO group than in the OMT group (60 vs. 40%, p < 0.001). The New York Heart Association (NYHA) functional class was worse in the LEVO group, as well as in NT-proBNP (5636.7 ± 6164.6 ng/dL and 1243.7 ± 1487.2 ng/dL, in the LEVO and OMT groups, respectively, p = 0.005). The FMD was significantly higher in the healthy control group compared to that of the OMT group (15.7 ± 6.4 vs. 9.1 ± 6.0%, p = 0.007) while it showed an intermediate value in LEVO patients (12.4 ± 7.1%) (ANOVA p = 0.010). In conclusion, levosimendan therapy seems to ameliorate endothelial dysfunction related to heart failure. Longitudinal studies in patients on periodic therapy are needed in order to confirm the long-term effects of levosimendan on ED

    Comparison of <i>gene clusters</i> from R7 and BCP1 genomes correlated to xenobiotic peripheral pathways.

    No full text
    <p>Comparative organization of genetic determinants for xenobiotic peripheral pathways in <i>R</i>. <i>opacus</i> R7 and <i>Rhodococcus</i> sp. BCP1 with <i>R</i>. <i>jostii</i> RHA1 as reference strain. Predicted genes (listed in <b><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0139467#pone.0139467.s022" target="_blank">S15</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0139467#pone.0139467.s023" target="_blank">S16</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0139467#pone.0139467.s024" target="_blank">S17</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0139467#pone.0139467.s025" target="_blank">S18</a> Tables</b>) and their orientation are shown by arrow. (A) <i>cat</i> gene cluster; (B) <i>pca</i> gene cluster; (C) <i>paa</i> gene cluster; (D) <i>hmg</i> gene cluster. When not specified, it means that genes were located on chromosome. Genes with unknown or hypothetical functions were reported as HP. Double slash indicates a distances between two genes more than 1 kb within the same plasmid or chromosome.</p
    corecore