5,726 research outputs found

    Spectral methods for modeling supersonic chemically reacting flow fields

    Get PDF
    A numerical algorithm was developed for solving the equations describing chemically reacting supersonic flows. The algorithm employs a two-stage Runge-Kutta method for integrating the equations in time and a Chebyshev spectral method for integrating the equations in space. The accuracy and efficiency of the technique were assessed by comparison with an existing implicit finite-difference procedure for modeling chemically reacting flows. The comparison showed that the procedure presented yields equivalent accuracy on much coarser grids as compared to the finite-difference procedure with resultant significant gains in computational efficiency

    Binding energy of shallow donors in a quantum well in the presence of a tilted magnetic field

    Full text link
    We present results of variational calculations of the binding energy of a neutral donor in a quantum well in the presence of a magnetic field tilted relative to the QW plane. Assuming that the donor is located in the center of the QW, we perform calculations for parameters typical of a II-VI wide-gap semiconductor heterostructure, using as an example the case of a rectangular CdTe quantum well with CdMgTe barriers. We present the dependence of the binding energy of a neutral donor on the tilt angle and on the magnitude of the applied magnetic filed. As a key result, we show that measurement of the binding energy of a donor at two angles of the magnetic field with respect to the quantum well plane can be used to unambiguously determined the conduction band offset of the materials building up heterostructure.Comment: 6 pages, 5 figure

    Molecular-field approach to the spin-Peierls transition in CuGeO_3

    Full text link
    We present a theory for the spin-Peierls transition in CuGeO_3. We map the elementary excitations of the dimerized chain (solitons) on an effective Ising model. Inter-chain coupling (or phonons) then introduce a linear binding potential between a pair of soliton and anti-soliton, leading to a finite transition temperature. We evaluate, as a function of temperature, the order parameter, the singlet-triplet gap, the specific heat, and the susceptibility and compare with experimental data on CuGeO_3. We find that CuGeO_3 is close to a first-order phase transition. We point out, that the famous scaling law \sim\delta^{2/3} of the triplet gap is a simple consequence of the linear binding potential between pairs of solitons and anti-solitons in dimerized spin chains.Comment: 7.1 pages, figures include

    Mean-field theory of the spin-Peierls systems: Application to CuGeO3

    Full text link
    A mean-field theory of the spin Peierls systems based on the two dimensional dimerized Heisenberg model is proposed by introducing an alternating bond order parameter. Improvements with respect to previous mean-field results are found in the one-dimensional limit for the ground state and the gap energies. In two dimensions, the analysis of the competition between antiferromagnetic long range order and the spin-Peierls ordering is given as a function of the coupling constants. We show that the lowest energy gap to be observed does not have a singlet-triplet character in agreement with the low temperature thermodynamic properties of CuGeO3.Comment: 3 Revtex pages. Submitted to Rapid Comm. Figures available upon reques

    Disordered Electrical Potential Observed on the Surface of SiO2_2 by Electric Field Microscopy

    Full text link
    The electrical potential on the surface of 300\sim 300 nm thick SiO2_2 grown on single crystalline Si substrates has been characterized at ambient conditions using electric field microscopy. Our results show an inhomogeneous potential distribution with fluctuations up to 0.4\sim 0.4 V within regions of 1μ1 \mum. The potential fluctuations observed at the surface of these usual dielectric holders of graphene sheets should induce strong variations in the graphene charge densities and provide a simple explanation for some of the anomalous behaviors of the transport properties of graphene.Comment: 4 pages and 4 figure

    Preference of the aphid Myzus persicae (Hemiptera: Aphididae) for tobacco plants at specific stages of potato virus Y infection

    Get PDF
    Potato virus Y (PVY) is a common pathogen affecting agricultural production worldwide and is mainly transmitted by Myzus persicae in a non-persistent manner. Insect-borne plant viruses can modify the abundance, performance, and behavior of their vectors by altering host plant features; however, most studies have overlooked the fact that the dynamic progression of virus infection in plants can have variable effects on their vectors. We addressed this point in the present study by dividing the PVY infection process in tobacco into three stages (early state, steady state and late state); delineated by viral copy number. We then compared the differential effects of PVY-infected tobacco (Nicotiana tabacum) plants on the host selection and feeding behavior of M. persicae. We used Y-shaped olfactory apparatus and electrical penetration graph (EPG) methods to evaluate host selection and feeding behavior, respectively. Interestingly, we found that PVY-infected plants at the steady state attracted more aphids than healthy plants, whereas no differences were observed for those at the early and late states. In terms of feeding behavior, intracellular punctures (closely related to PVY acquisition and transmission) were more abundant on PVY-infected tobacco plants at the early and steady states of infection than in uninfected plants. These results indicate that PVY-infected host plants can alter the host selection and feeding behavior of aphids in a stage-dependent manner, which is an important consideration when studying the interactions among host plants, viruses, and insect vectors. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature

    Transport Properties of the One Dimensional Ferromagnetic Kondo Lattice Model : A Qualitative Approach to Oxide Manganites

    Full text link
    The transport properties of the ferromagnetic Kondo lattice model in one dimension are studied via bosonization methods. The antiferromagnetic fluctuations, which normally appear because of the RKKY interactions, are explicitly taken into account as a direct exchange between the ``core'' spins. It is shown that in the paramagnetic regime with the local antiferromagnetic fluctuations, the resistivity decays exponentially as the temperature increases while in the ferromagnetic regime the system is an almost perfect conductor. %A non-perturbative description of localized spin polarons %in the paramagnetic region is obtained. The effect of a weak applied field is discussed to be reduced to the case of the ferromagnetic state leading to band splitting. The qualitative relevance of the results for the problem of the Oxide Manganites is emphasized.Comment: 4 pages, REVTe

    Phase separation in double exchange systems

    Full text link
    Ferromagnetic systems described by the double exchange model are investigated. At temperatures close to the Curie temperature, and for a wide range of doping levels, the system is unstable toward phase separation. The chemical potential decreases upon increasing doping, due to the significant dependence of the bandwidth on the number of carriers. The reduction of the electronic bandwidth by spin disorder leads to an enormously enhanced thermopower which peaks near T_c, with a sign opposite that predicted by a rigid band model.Comment: 4 pages, 2 encapsulated PostScript figure

    Many-body CPA for the Holstein-DE model

    Full text link
    A many-body coherent potential approximation (CPA) previously developed for the double exchange (DE) model is extended to include coupling to local quantum phonons. The Holstein-DE model studied (equal to the Holstein model for zero Hund coupling) is considered to be a simple model for the colossal magnetoresistance manganites. We concentrate on effects due to the quantisation of the phonons, such as the formation of polaron subbands. The electronic spectrum and resistivity are investigated for a range of temperature and electron-phonon coupling strengths. Good agreement with experiment is found for the Curie temperature and resistivity with intermediate electron-phonon coupling strength, but phonon quantisation is found not to have a significant effect in this coupling regime.Comment: 19 pages, 7 figure
    corecore