9,179 research outputs found

    TLEP, first step in a long-term vision for HEP

    Full text link
    The discovery of H(126) has renewed interest in circular e+e- colliders that can operate as Higgs factories, which benefit from three unique characteristics: i) high luminosity and reliability, ii) the availability of several interaction points, iii) superior beam energy accuracy. TLEP is an e+e- storage ring of 80-km circumference that can operate with very high luminosity from the Z peak (90 GeV) to the top quark pair threshold (350 GeV). It can achieve transverse beam polarization at the Z peak and WW threshold, giving it unparalleled accuracy on the beam energy. A preliminary study indicates that an 80 km tunnel could be constructed around CERN. Such a tunnel would allow a 100 TeV proton-proton collider to be established in the same ring (VHE-LHC), offering a long term vision.Comment: This is a contribution to the the Snowmass process 2013: Frontier Capabilitie

    Comments on "Wall-plug (AC) power consumption of a very high energy e+/e- storage ring collider" by Marc Ross

    Full text link
    The paper arXiv:1308.0735 questions some of the technical assumptions made by the TLEP Steering Group when estimating in arXiv:1305.6498 the power requirement for the very high energy e+e- storage ring collider TLEP. We show that our assumptions are based solidly on CERN experience with LEP and the LHC, as well accelerators elsewhere, and confirm our earlier baseline estimate of the TLEP power consumption.Comment: 6 page

    TLEP: A High-Performance Circular e+e- Collider to Study the Higgs Boson

    Full text link
    The recent discovery of a light Higgs boson has opened up considerable interest in circular e+e- Higgs factories around the world. We report on the progress of the TLEP concept since last year. TLEP is an e+e- circular collider capable of very high luminosities in a wide centre-of-mass (ECM) spectrum from 90 to 350 GeV. TLEP could be housed in a new 80 to 100 km tunnel in the Geneva region. The design can be adapted to different ring circumference (e.g. LEP3 in the 27 km LHC tunnel). TLEP is an ideal complementary machine to the LHC thanks to high luminosity, exquisite determination of ECM and the possibility of four interaction points, both for precision measurements of the Higgs boson properties and for precision tests of the closure of the Standard Model from the Z pole to the top threshold.Comment: Contribution to IPAC13, 12-17 May 2013, Shanghai, Chin

    Development of microwave superconducting microresonators for neutrino mass measurement in the HOLMES framework

    Full text link
    The European Research Council has recently funded HOLMES, a project with the aim of performing a calorimetric measurement of the electron neutrino mass measuring the energy released in the electron capture decay of 163Ho. The baseline for HOLMES are microcalorimeters coupled to Transition Edge Sensors (TESs) read out with rf-SQUIDs, for microwave multiplexing purposes. A promising alternative solution is based on superconducting microwave resonators, that have undergone rapid development in the last decade. These detectors, called Microwave Kinetic Inductance Detectors (MKIDs), are inherently multiplexed in the frequency domain and suitable for even larger-scale pixel arrays, with theoretical high energy resolution and fast response. The aim of our activity is to develop arrays of microresonator detectors for X-ray spectroscopy and suitable for the calorimetric measurement of the energy spectra of 163Ho. Superconductive multilayer films composed by a sequence of pure Titanium and stoichiometric TiN layers show many ideal properties for MKIDs, such as low loss, large sheet resistance, large kinetic inductance, and tunable critical temperature TcT_c. We developed Ti/TiN multilayer microresonators with TcT_c within the range from 70 mK to 4.5 K and with good uniformity. In this contribution we present the design solutions adopted, the fabrication processes and the characterization results

    X, Y and Z States

    Full text link
    Many new states in the charmonium mass region were recently discovered by BaBar, Belle, CLEO-c, CDF, D0, BESIII, LHCb and CMS Collaborations. We use the QCD Sum Rule approach to study the possible structure of some of these states.Comment: Contribution for the proceedings of the "XII Quark Confinement and the Hadron Spectrum - CONF12" conferenc

    Gully Formation at the Haughton Impact Structure (Arctic Canada) Through the Melting of Snow and Ground Ice, with Implications for Gully Formation on Mars

    Get PDF
    The formation of gullies on Mars has been the topic of active debate and scientific study since their first discovery by Malin and Edgett in 2000. Several mechanisms have been proposed to account for gully formation on Mars, from dry mass movement processes, release of water or brine from subsurface aquifers, and the melting of near-surface ground ice or snowpacks. In their global documentation of martian gullies, report that gullies are confined to ~2783S and ~2872N latitudes and span all longitudes. Gullies on Mars have been documented on impact crater walls and central uplifts, isolated massifs, and on canyon walls, with crater walls being the most common situation. In order to better understand gully formation on Mars, we have been conducting field studies in the Canadian High Arctic over the past several summers, most recently in summer 2018 and 2019 under the auspices of the Canadian Space Agency-funded Icy Mars Analogue Program. It is notable that the majority of previous studies in the Arctic and Antarctica, including our recent work on Devon Island, have focused on gullies formed on slopes generated by regular endogenic geological processes and in regular bedrock. How-ever, as noted above, meteorite impact craters are the most dominant setting for gullies on Mars. Impact craters provide an environment with diverse lithologies including impact-generated and impact-modified rocks and slope angle, and thus greatly variable hill slope processes could occur within a localized area. Here, we investigate the formation of gullies within the Haughton impact structure and compare them to gullies formed in unimpacted target rock in the nearby Thomas Lee Inle

    Chromitite petrogenesis in the mantle section of the Ballantrae Ophiolite Complex (Scotland)

    Get PDF
    5siPodiform chromitites from the Ballantrae Ophiolite Complex (BOC), NW Scotland, are examined to investigate their petrogenesis and elucidate the nature of melt percolation in the supra-subduction zone oceanic mantle more generally. The mantle portion of the BOC comprises two petrologically distinct serpentinite belts, whose differences have previously been attributed to contrasting degrees of melt extraction. Chromitite occurs in each of the northern and southern serpentinite belts, at Pinbain Bridge and Poundland Burn, respectively. Field relationships suggest that chromitites were formed by melt-rock reaction in channel-like conduits in the upper mantle. Chromitite Cr-spinel compositions from the two localities show marked differences to one another, with the Pinbain Bridge chromitite Cr-spinels being characterised by relatively high Cr# [Cr/(Cr+Al); 0.62-0.65] and lower abundances of certain trace elements (e.g., Ti, Ga, V), whereas the Poundland Burn chromitite Cr-spinels exhibit relatively low Cr# (0.44-0.46) and higher concentrations of these trace elements. The contrasting Cr-spinel compositions are used to estimate parental magma compositions for the chromitites; the Pinbain Bridge chromitites crystallised from magmas resembling arc tholeiites whereas MORB-like magmas were involved in formation of the Poundland Burn chromitites. While it is possible that this dichotomy points to early derivation of the BOC at a MORB spreading centre, with subsequent processing in a supra-subduction zone, we suggest that the differences reflect melt extraction from different parts of an evolving subduction zone, such that the MORB-like magmas were generated in a back-arc setting. This interpretation finds support in the Ti/Fe3# versus Ga/Fe3# systematics of peridotite-hosted accessory Cr-spinel that we present here, as well as previously published trace element data and geochronological constraints on the basalt lava sequences associated with the BOC, which collectively favour formation of the Poundland Burn chromitites in subduction zone mantle.partially_openembargoed_20210616Derbyshire, EJ, O’Driscoll, B, Lenaz, D, Zanetti, A, Gertisser, RDerbyshire, Ej; O’Driscoll, B; Lenaz, D; Zanetti, A; Gertisser,
    • …
    corecore