208 research outputs found

    Volcanic Eruptions: A Source of Irreducible Uncertainty for Future Climates

    Get PDF
    Volcanic forcing, a major natural source of climate variability, represents a challenge for current climate modeling because of the unpredictability and specificity of individual eruptions, and because of the complexity of processes linking the eruption to the climate response. Volcanic forcing is largely underrepresented in available future climate projections, which is a critical problem. The study by Man Mei Chim and Colleagues (Chim et al., 2023, https://doi.org/10.1029/2023GL103743) tackles this known unknown and reveals how climatically relevant volcanic activity may be stronger than currently thought in a future warmer climate, enhancing uncertainty of climate projections. The study exemplifies the profound implications of inaccuracies within simplified climate scenarios and motivates new research on volcanically forced climate variability. It also arouses some thoughts on climate uncertainty communication

    Winter Euro-Atlantic Climate Modes: Future Scenarios From a CMIP6 Multi-Model Ensemble

    Get PDF
    Dominant Euro-Atlantic modes of large-scale atmospheric variability significantly affect interannual-to-decadal Euro-Mediterranean climate fluctuations, especially in winter. Here, we investigate the robustness of historical and projected state and variability of such modes in a CMIP6 multi-model ensemble of historical and ssp585 future scenario simulations, focusing on the winter season. Results show overall good skills of the historical ensemble to reproduce the observed temporal, spectral and distributional properties of all considered modes. At the end of the 21st Century the ssp585 ensemble yields non-significant distributional changes for NAO, EAWR, and SCA indices and a transition to a baroclinic structure for EA, with persistent positive anomalies in the mid-troposphere enhancing globally-driven warming over the Euro-Mediterranean region. The hemispheric spatial correlation patterns with temperature and precipitation significantly change for all modes, that is, we observe a significant modulation of the teleconnections associated with each index

    Is the Atlantic a Source for Decadal Predictability of Sea-Level Rise in Venice?

    Get PDF
    Sea-level rise is one of the most critical consequences of global warming, with potentially vast impacts on coastal environments and societies. Sea-level changes are spatially and temporally heterogeneous on multiannual-to-multidecadal timescales. Here, we demonstrate that the observed rate of winter sea-level rise in the Italian city of Venice contains significant multidecadal fluctuations, including interdecadal periods of near-zero trend. Previous literature established a connection between the local sea-level trend in Venice and over the broad subpolar and eastern North Atlantic. We demonstrate that for multidecadal variations in sea-level trend such connection holds only since the mid-20th Century. Such multidecadal sea-level fluctuations relate to North Atlantic sea-surface temperature changes described by the Atlantic multidecadal variability, or AMV. The link is explained by combined effect of AMV-linked steric variations in the North Atlantic propagating in the Mediterranean Sea, and large-scale atmospheric circulation anomalies over the North Atlantic with a local effect on sea level in Venice. We discuss the implications of such variability for near-term predictability of winter sea-level changes in Venice. Combining available sea-level projections for Venice with a scenario of imminent AMV cooling yields a slowdown in the rate of sea-level rise in Venice, with the possibility of mean values remaining even roughly constant in the next two decades as AMV effects contrast the expected long-term sea-level rise. Acknowledging, understanding, and communicating this multidecadal variability in local sea-level rise is crucial for management and protection of this world-class historical site.Plain Language Summary Environmental and socioeconomic impacts of sea-level rise are one of the major concerns of global warming. Here, we consider the case of the Italian city of Venice, one of the iconic locations for the potentially dramatic effects of sea-level rise. We show that the sea-level evolution in Venice during the past similar to 150 years contains strong multidecadal fluctuations, so that periods of more than two decades when there is little or no trend occurred even in the recent past. We link these fluctuations with sea-level and climatic variations in the North Atlantic. In particular, we focus on the phenomenon known as Atlantic multidecadal variability, or AMV, which describes the alternation over multidecadal periods of warm and cold phases of the North Atlantic surface. Our results indicate that warm AMV phases are linked to faster sea-level rise in Venice and vice versa. Accordingly, we build sea-level rise scenarios for Venice until 2035 by considering an imminent AMV cooling as suggested by recent studies. The scenarios yield a temporary slowdown of sea-level rise as the AMV contrasts the effects of global warming. This sea-level variability can strongly impact on the management of protective measures against flooding currently operative in Venice

    Observational constraints on the tropospheric and near-surface winter signature of the Northern Hemisphere stratospheric polar vortex

    Get PDF
    A composite analysis of Northern Hemisphere’s mid-winter tropospheric anomalies under the conditions of strong and weak stratospheric polar vortex was performed on NCEP/NCAR reanalysis data from 1948 to 2013 considering, as additional grouping criteria, the coincidental states of major seasonally relevant climate phenomena, such as El Niño-Southern Oscillation (ENSO), Quasi Biennial Oscillation and strong volcanic eruptions. The analysis reveals that samples of strong polar vortex nearly exclusively occur during cold ENSO states, while a weak polar vortex is observed for both cold and warm ENSO. The strongest tropospheric and near-surface anomalies are found for warm ENSO and weak polar vortex conditions, suggesting that internal tropospheric circulation anomalies related to warm ENSO constructively superpose on dynamical effects from the stratosphere. Additionally, substantial differences are found between the continental winter warming patterns under strong polar vortex conditions in volcanically-disturbed and volcanically-undisturbed winters. However, the small-size samples obtained from the multi-compositing prevent conclusive statements about typical patterns, dominating effects and mechanisms of stratosphere-troposphere interaction on the seasonal time scale based on observational/reanalysis data alone. Hence, our analysis demonstrates that patterns derived from observational/reanalysis time series need to be taken with caution as they not always provide sufficiently robust constraints to the inferred mechanisms implicated with stratospheric polar vortex variability and its tropospheric and near-surface signature. Notwithstanding this argument, we propose a limited set of mechanisms that together may explain a relevant part of observed climate variability. These may serve to define future numerical model experiments minimizing the sample biases and, thus, improving process understanding.This work was supported by the Federal Ministry for Education and Research in Germany (BMBF) through the research program “MiKlip” (FKZ:01LP1158A(DZ):/01LP1130A(CT,MB)).This is the accepted version of an article originally published in Climate Dynamics. The final publication is available at Springer via http://dx.doi.org/10.1007/s00382-014-2101-0

    On the interchangeability of sea-surface and near-surface air temperature anomalies in climatologies

    Get PDF
    On global and hemispheric scales, sea-surface temperature (SST) anomalies are assumed to be good surrogates for near-surface marine air temperature (MAT) anomalies. In fact, global gridded temperature datasets commonly blend SST and near-surface air temperature anomalies to overcome the lack of geographically homogeneous and reliable MAT observations. Here, we show that SST and MAT anomalies differ regarding crucial statistical properties such as multiannual trends and probabilistic distributions of daily and monthly averages. We provide evidence of the lack of interchangeability from an array of moored buoys in the tropical Pacific Ocean. We identify statistically significant discrepancies between SST and MAT anomalies for single as well as groups of such buoys. Thus, caution is required when characterizing and interpreting MAT variability through SST observations, especially at shorter than decadal timescale

    Stratosphere troposphere coupling: the influence of volcanic eruptions

    Get PDF
    Stratospheric sulfate aerosols produced by major volcanic eruptions modify the radiative and dynamical properties of the troposphere and stratosphere through their reflection of solar radiation and absorption of infrared radiation. At the Earth's surface, the primary consequence of a large eruption is cooling, however, it has long been known that major tropical eruptions tend to be followed by warmer than usual winters over the Northern Hemisphere (NH) continents. This volcanic "winter-warming" effect in the NH is understood to be the result of changes in atmospheric circulation patterns resulting from heating in the stratosphere, and is often described as positive anomalies of the Northern Annular Mode (NAM) that propagate downward from the stratosphere to the troposphere. In the southern hemisphere, climate models tend to also predict a positive Southern Annular Mode (SAM) response to volcanic eruptions, but this is generally inconsistent with post-eruption observations during the 20th century. We review present understanding of the influence of volcanic eruptions on the large scale modes of atmospheric variability in both the Northern and Southern Hemispheres. Using models of varying complexity, including an aerosol-climate model, an Earth system model, and CMIP5 simulations, we assess the ability of climate models to reproduce the observed post-eruption climatic and dynamical anomalies. We will also address the parametrization of volcanic eruptions in simulations of the past climate, and identify possibilities for improvemen

    Disentangling Internal and External Contributions to Atlantic Multidecadal Variability Over the Past Millennium

    Get PDF
    The Atlantic multidecadal variability (AMV) modulates the North Atlantic surface ocean variability and affects decadal climates over the globe; its underlying mechanisms remain, however, under debate. In this study, we use a multi-model ensemble of transient past-millennium (850–1849) and unperturbed preindustrial control simulations contributing to the paleoclimate modeling intercomparison project—phase 4 (PMIP4) to decompose the AMV signal into the internal AMV and the external signal. The internal component of AMV exhibits no robust behavior across simulations during periods of major forcing such as strong volcanic eruptions, whereas the external forced temperature responds to volcanic eruptions with an immediate radiative cooling followed, in some simulations, by a sequence of damped multidecadal oscillations. The internal component tightly relates with the Atlantic meridional overturning circulation (AMOC) and dominates the fluctuations of AMV; whereas the external signal has limited impacts on AMOC and explains ∼25% of the AMV variance over the past millennium

    Robust decadal hydroclimate predictions for northern Italy based on a twofold statistical approach

    Get PDF
    The Mediterranean area belongs to the regions most exposed to hydroclimatic changes, with a likely increase in frequency and duration of droughts in the last decades. However, many climate records like, e.g., North Italian precipitation and river discharge records, indicate that significant decadal variability is often superposed or even dominates long-term hydrological trends. The capability to accurately predict such decadal changes is, therefore, of utmost environmental and social importance. Here, we present a twofold decadal forecast of Po River (Northern Italy) discharge obtained with a statistical approach consisting of the separate application and cross-validation of autoregressive models and neural networks. Both methods are applied to each significant variability component extracted from the raw discharge time series using Singular Spectrum Analysis, and the final forecast is obtained by merging the predictions of the individual components. The obtained 25-year forecasts robustly indicate a prominent dry period in the late 2020s/early 2030s. Our prediction provides information of great value for hydrological management, and a target for current and future near-term numerical hydrological predictions

    Robust decadal hydroclimate predictions for northern Italy based on a twofold statistical approach

    Get PDF
    The Mediterranean area belongs to the regions most exposed to hydroclimatic changes, with a likely increase in frequency and duration of droughts in the last decades. However, many climate records like, e.g., North Italian precipitation and river discharge records, indicate that significant decadal variability is often superposed or even dominates long-term hydrological trends. The capability to accurately predict such decadal changes is, therefore, of utmost environmental and social importance. Here, we present a twofold decadal forecast of Po River (Northern Italy) discharge obtained with a statistical approach consisting of the separate application and cross-validation of autoregressive models and neural networks. Both methods are applied to each significant variability component extracted from the raw discharge time series using Singular Spectrum Analysis, and the final forecast is obtained by merging the predictions of the individual components. The obtained 25-year forecasts robustly indicate a prominent dry period in the late 2020s/early 2030s. Our prediction provides information of great value for hydrological management, and a target for current and future near-term numerical hydrological predictions
    corecore