4 research outputs found

    Electrooxidation of C-4 polyols on platinum single- crystals: a computational and electrochemical study

    Get PDF
    Many polyols are abundant and cheap molecules highly spread in the biomass. These molecules have an enormous potential to be used in electrochemical devices to generate energy and/or value-added molecules. The electrooxidation of polyols can produce different substances of interest in the chemical industry concomitantly to high purity hydrogen in electrolyzers. The cost in the production of all these chemicals depends, among other factors, on the develop of more active and selective catalysts. However, in order to search for these materials using computational experiments, it is mandatory to have a better understanding of the fundamental aspect of the reactions, which permit to base the search on the adsorption energies of one or more key reaction intermediates. To contribute to this task, we performed (spectro)-electrochemical and computational experiments to study the electrooxidation of C-4 polyols. We show that the electrooxidation of polyols does not depend on the relative orientation of their OH groups. Besides, using Pt single crystals, we demonstrate that the trend for the oxidation of the primary carbon (relative to the secondary) increases in the order Pt(111) < Pt(100) < Pt(110) and that this result can be extended to polyols with longer carbon chains. Finally, computational experiments permit us to rationalize these trends looking at the relative stability of double dehydrogenated intermediates on the Pt basal planes.Catalysis and Surface Chemistr

    Semaphorin signals in cell adhesion and cell migration: functional role and molecular mechanisms

    No full text
    Cell migration is pivotal in embryo development and in the adult. During development a wide range of progenitor cells travel over long distances before undergoing terminal differentiation. Moreover, the morphogenesis of epithelial tissues and of the cardiovascular system involves remodelling compact cell layers and sprouting of new tubular branches. In the adult, cell migration is essential for leucocytes involved in immune response. Furthermore, invasive and metastatic cancer cells have the distinctive ability to overcome normal tissue boundaries, travel in and out of blood vessels, and settle down in heterologous tissues. Cell migration normally follows strict guidance cues, either attractive, or inhibitory and repulsive. Semaphorins are a wide family of signals guiding cell migration during development and in the adult. Recent findings have established that semaphorin receptors, the plexins, govern cell migration by regulating integrin-based cell substrate adhesion and actin cytoskeleton dynamics, via specific monomeric GTPases. Plexins furthermore recruit tyrosine kinases in receptor complexes, which allows switching between multiple signaling pathways and functional outcomes. In this article, we will review the functional role of semaphorins in cell migration and the implicated molecular mechanisms controlling cell adhesion
    corecore