55 research outputs found

    Presence of Destruxin A and Beauvericin in cereals

    Get PDF
    A LC-MS/MS method for the detection of destruxin A (DTX A) and beauvericin (BEA) in cereals was developed, validated and applied to commercial products collected in Italian markets in the years 2015-2016. Results showed that BEA contaminated 59 % of the samples even if only 15 of them (34%) showed quantifiable residues (comprised between 0.11 and 7.51 ng/g). The sample of red rice contaminated with the highest BEA level was also contaminated with DTX A (0.28 ng/g). Finally, no significant differences were detected between contaminated samples based on the production year and the agronomic technology used (organic or conventional farming)

    Improvement of pyrazolo[3,4-d]pyrimidines pharmacokinetic properties: Nanosystem approaches for drug delivery

    Get PDF
    Pyrazolo[3,4-d]pyrimidines are a class of compounds with a good activity against several cancer cell lines. Despite the promising anticancer activity, these molecules showed a poor aqueous solubility. This issue could threat the future development of pyrazolo[3,4-d]pyrimidines as clinical drug candidates. With the aim of improving their solubility profile and consequently their pharmacokinetic properties, we have chosen four compounds (1-4) on the base of their anti-neuroblastoma activity and we have developed albumin nanoparticles and liposomes for the selected candidates. Albumin nanoparticles and liposomes were prepared and characterized regarding size and ? -potential distribution, polidispersity index, entrapment efficiency and activity against SH-SY5Y human neuroblastoma cell line. The most promising nanosystem, namely LP-2, was chosen to perform further studies: confocal microscopy, stability and drug release in physiological conditions, and biodistribution. Altogether, the obtained data strongly indicate that the encapsulation of pyrazolo[3,4-d]pyrimidines in liposomes represent an effective method to overcome the poor water solubility

    Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents

    Get PDF
    Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEADbox polypeptide 3 (DDX3) is a human host factor required for the replication of several DNA and RNA viruses, including some of the most challenging human pathogens currently circulating, such as HIV-1, Hepatitis C virus, Dengue virus, and West Nile virus. Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. In addition to the multiple antiviral activities, hit compound 16d retained full activity against drug-resistant HIV-1 strains in the absence of cellular toxicity. Pharmacokinetics and toxicity studies in rats confirmed a good safety profile and bioavailability of 16d. Thus, DDX3 is here validated as a valuable therapeutic target

    Development and in Vitro Evaluation of a Microbicide Gel Formulation for a Novel Non-Nucleoside Reverse Transcriptase Inhibitor Belonging to the N-Dihydroalkyloxybenzyloxopyrimidines (N-DABOs) Family

    Get PDF
    17openPreventing HIV transmission by the use of a vaginal microbicide is a topic of considerable interest in the fight against AIDS. Both a potent anti-HIV agent and an efficient formulation are required to develop a successful microbicide. In this regard, molecules able to inhibit the HIV replication before the integration of the viral DNA into the genetic material of the host cells, such as entry inhibitors or reverse transcriptase inhibitors (RTIs), are ideal candidates for prevention purpose. Among RTIs, S- and N-dihydroalkyloxybenzyloxopyrimidines (S-DABOs and N-DABOs) are interesting compounds active at nanomolar concentration against wild type of RT and with a very interesting activity against RT mutations. Herein, novel N-DABOs were synthesized and tested as anti-HIV agents. Furthermore, their mode of binding was studied by molecular modeling. At the same time, a vaginal microbicide gel formulation was developed and tested for one of the most promising candidates.openTintori, Cristina; Brai, Annalaura; DASSO LANG, MARIA CHIARA; Deodato, Davide; Greco, Antonia Michela; Bizzarri, Bruno Mattia; Cascone, Lorena; Casian, Alexandru; Zamperini, Claudio; Dreassi, Elena; Crespan, Emmanuele; Maga, Giovanni; Vanham, Guido; Ceresola, Elisa; Canducci, Filippo; Ariën, Kevin K.; Botta, MaurizioTintori, Cristina; Brai, Annalaura; DASSO LANG, MARIA CHIARA; Deodato, Davide; Greco, Antonia Michela; Bizzarri, Bruno Mattia; Cascone, Lorena; Casian, Alexandru; Zamperini, Claudio; Dreassi, Elena; Crespan, Emmanuele; Maga, Giovanni; Vanham, Guido; Ceresola, Elisa; Canducci, Filippo; Ariën, Kevin K.; Botta, Maurizi

    Suppression of SRC signaling is effective in reducing synergy between glioblastoma and stromal cells

    No full text
    12noneGlioblastoma cells efficiently interact with and infiltrate the surrounding normal tissue, rendering surgical resection and adjuvant chemo/radiotherapy ineffective. New therapeutic targets, able to interfere with glioblastoma's capacity to synergize with normal brain tissue, are currently under investigation. The compound Si306, a pyrazolo[3,4-d]pyrimidine derivative, selected for its favorable activity against SRC, was tested in vitro and in vivo on glioblastoma cell lines. In vivo, combination treatment with Si306 and radiotherapy was strongly active in reducing U-87 xenograft growth with respect to control and single treatments. The histology revealed a significant difference in the stromal compartment of tumoral tissue derived from control or radiotherapy-treated samples with respect to Si306-treated samples, showing in the latter a reduced presence of collagen and α-SMA-positive cells. This effect was paralleled in vitro by the capacity of Si306 to interfere with myofibroblastic differentiation of normal fibroblasts induced by U-87 cells. In the presence of Si306, TGF-b released by U-87 cells, mainly in hypoxia, was ineffective in upregulating α-SMA and β-PDGFR in fibroblasts. Si306 efficiently reached the brain and significantly prolonged the survival of mice orthotopically injected with U-87 cells. Drugs that target SRC could represent an effective therapeutic strategy in glioblastoma, able to block positive paracrine loop with stromal cells based on the b-PDGFR axis and the formation of a tumor-promoting microenvironment. This approach could be important in combination with conventional treatments in the effort to reduce tumor resistance to therapy.noneCalgani, Alessia; Vignaroli, Giulia; Zamperini, Claudio; Coniglio, Federica; Festuccia, Claudio; Cesare, Ernesto Di; Gravina, Giovanni Luca; Mattei, Claudia; Vitale, Flora; Schenone, Silvia; Botta, Maurizio; Angelucci, AdrianoCalgani, Alessia; Vignaroli, Giulia; Zamperini, Claudio; Coniglio, Federica; Festuccia, Claudio; Cesare, Ernesto Di; Gravina, Giovanni Luca; Mattei, Claudia; Vitale, Flora; Schenone, Silvia; Botta, Maurizio; Angelucci, Adrian

    Plasmin-Binding Tripeptide-Decorated Liposomes Loading Pyrazolo[3,4- d]pyrimidines for Targeting Hepatocellular Carcinoma

    No full text
    Hepatocellular carcinoma (HCC) is one of the most fatal cancer types worldwide. HCC cells were proved to overexpress c-Src and Sgk1, a tyrosine and a serine-threonine kinase, respectively, whose role is crucial for the development and progression of the tumor. Pyrazolo[3,4-d]pyrimidine derivatives are a class of tyrosine kinase inhibitors that have shown good activity against HepG2. HCC cells were also proved to overexpress plasmin, which is localized on the cell surface bound to its receptors. In this study, a tripeptide with sequence d-Ala-Phe-Lys, which binds a specific reactive site of plasmin, was synthesized and characterized. This tripeptide was used to decorate liposomes encapsulating three selected pyrazolo[3,4-d]pyrimidines. Liposomes bearing tripeptide have been characterized, not showing remarkable differences with respect to the corresponding tripeptide-free liposomes. In vitro HepG2 cell uptake profiles and cytotoxicities showed that the presence of the tripeptide on the liposomal membrane surface improves the cell-penetrating ability of liposomes and increases the activity of two of the three tested compounds

    In vitro screening of 2-(1H-imidazol-1-yl)-1-phenylethanol derivatives as antiprotozoal agents and docking studies on Trypanosoma cruzi CYP51

    No full text
    Sterol 14a-demethylase (CYP51) is a key enzyme involved in the survival and virulence of many parasite protozoa, such as Trypanosoma and Leishmania species, thus representing a valuable drug target for the treatment of Kinetoplastid diseases. A set of azole-based compounds selected from an in-house compound library was in vitro screened against different human protozoan parasites. Several compounds showed selective activity against Trypanosoma cruzi, with compound 7 being the most active (IC50 40 nM). Given the structural similarity between the compounds here reported and known CYP51 inhibitors, a molecular docking study was performed to assess their binding with protozoal target and to rationalize the biological activity data

    A combined targeted/phenotypic approach for the identification of new antiangiogenics agents active on a zebrafish model: From in silico screening to cyclodextrin formulation

    No full text
    A combined targeted/phenotypic approach for the rapid identification of novel antiangiogenics with in vivo efficacy is herein reported. Considering the important role played by the tyrosine kinase c-Src in the regulation of tumour angiogenesis, we submitted our in-house library of c-Src inhibitors to a sequential screening approach: in silico screening on VEGFR2, in vitro screening on HUVEC cells, ADME profiling, formulation and in vivo testing on a zebrafish model. A promising antiangiogenic candidate able to interfere with the vascular growth of a zebrafish model at low micromolar concentration was thus identified

    Pyrazolo[3,4-d]pyrimidines-loaded human serum albumin (HSA) nanoparticles: Preparation, characterization and cytotoxicity evaluation against neuroblastoma cell line

    No full text
    Pyrazolo[3,4-d]pyrimidine derivatives 1\ue2\u80\u935, active as c-Src inhibitors, have been selected to be formulated as drug-loaded human serum albumin (HSA) nanoparticles, with the aim of improving their solubility and pharmacokinetic properties. The present study includes the optimization of a desolvation method-based procedure for preparing HSA nanoparticles. First, characterization by HPLC-MS and Dynamic Light Scattering (DLS) showed a good entrapment efficacy, a controllable particle size (between 100 and 200\uc2 nm) and an optimal stability over time, confirmed by an in vitro drug release assay. Then, 1\ue2\u80\u934 and the corresponding NPs were tested for their antiproliferative activity against neuroblastoma SH-SY5Y cell line. Notably, 3-NPs and 4-NPs were identified as the most promising formulation showing a profitable balance of stability, small size and a similar activity compared to the free drugs in cell-based assays. In addition, albumin formulations increase the solubility of pyrazolo[3,4-d]pyrimidine avoiding the use of DMSO as solubilizing agent
    corecore