48 research outputs found

    Gremlin is a novel agonist of the major pro-angiogenic receptor VEGFR2

    Get PDF
    The bone morphogenic protein antagonist gremlin is expressed during embryonic development and under different pathologic conditions, including cancer. Gremlin is a proangiogenic protein belonging to the cystine-knot superfamily that includes transforming growth factor-β proteins and the angiogenic vascular endothelial growth factors (VEGFs). Here, we demonstrate that gremlin binds VEGF receptor-2 (VEGFR2), the main transducer of VEGF-mediated angiogenic signals, in a bone morphogenic protein-independent manner. Similar to VEGF-A, gremlin activates VEGFR2 in endothelial cells, leading to VEGFR2-dependent angiogenic responses in vitro and in vivo. Gremlin thus represents a novel proangiogenic VEGFR2 agonist distinct from the VEGF family ligands with implications in vascular development, angiogenesis-dependent diseases, and tumor neovascularization

    Type I collagen limits VEGFR-2 signaling by a SHP2 protein-tyrosine phosphatase-dependent mechanism 1.

    Get PDF
    During angiogenesis, a combined action between newly secreted extracellular matrix proteins and the repertoire of integrins expressed by endothelial cells contributes in the regulation of their biological functions. Extracellular matrix-engaged integrins influence tyrosine kinase receptors, thus promoting a regulatory cross-talk between adhesive and soluble stimuli. For instance, vitronectin has been reported to positively regulate VEGFR-2. Here, we show that collagen I downregulates VEGF-A-mediated VEGFR-2 activation. This activity requires the tyrosine phosphatase SHP2, which is recruited to the activated VEGFR-2 when cells are plated on collagen I, but not on vitronectin. Constitutive expression of SHP2(C459S) mutant inhibits the negative role of collagen I on VEGFR-2 phosphorylation. VEGFR-2 undergoes internalisation, which is associated with dynamin II phosphorylation. Expression of SHP2(C459S) impairs receptor internalisation suggesting that SHP2-dependent dephosphorylation regulates this process. These findings demonstrate that collagen I in provisional extracellular matrix surrounding nascent capillaries triggers a signaling pathway that negatively regulates angiogenesis

    NETTAB 2012 on “Integrated Bio-Search”

    Get PDF
    The NETTAB 2012 workshop, held in Como on November 14-16, 2012, was devoted to "Integrated Bio-Search", that is to technologies, methods, architectures, systems and applications for searching, retrieving, integrating and analyzing data, information, and knowledge with the aim of answering complex bio-medical-molecular questions, i.e. some of the most challenging issues in bioinformatics today. It brought together about 80 researchers working in the field of Bioinformatics, Computational Biology, Biology, Computer Science and Engineering. More than 50 scientific contributions, including keynote and tutorial talks, oral communications, posters and software demonstrations, were presented at the workshop. This preface provides a brief overview of the workshop and shortly introduces the peer-reviewed manuscripts that were accepted for publication in this Supplement

    NOTCH3 Expression Is Linked to Breast Cancer Seeding and Distant Metastasis

    Get PDF
    Background: Development of distant metastases involves a complex multistep biological process termed the invasion-metastasis cascade, which includes dissemination of cancer cells from the primary tumor to secondary organs. NOTCH developmental signaling plays a critical role in promoting epithelial-to-mesenchymal transition, tumor stemness, and metastasis. Although all four NOTCH receptors show oncogenic properties, the unique role of each of these receptors in the sequential stepwise events that typify the invasion-metastasis cascade remains elusive. Methods: We have established metastatic xenografts expressing high endogenous levels of NOTCH3 using estrogen receptor alpha-positive (ERα+) MCF-7 breast cancer cells with constitutive active Raf-1/mitogen-associated protein kinase (MAPK) signaling (vMCF-7Raf-1) and MDA-MB-231 triple-negative breast cancer (TNBC) cells. The critical role of NOTCH3 in inducing an invasive phenotype and poor outcome was corroborated in unique TNBC cells resulting from a patient-derived brain metastasis (TNBC-M25) and in publicly available claudin-low breast tumor specimens collected from participants in the Molecular Taxonomy of Breast Cancer International Consortium database. Results: In this study, we identified an association between NOTCH3 expression and development of metastases in ERα+ and TNBC models. ERα+ breast tumor xenografts with a constitutive active Raf-1/MAPK signaling developed spontaneous lung metastases through the clonal expansion of cancer cells expressing a NOTCH3 reprogramming network. Abrogation of NOTCH3 expression significantly reduced the self-renewal and invasive capacity of ex vivo breast cancer cells, restoring a luminal CD44low/CD24high/ERαhigh phenotype. Forced expression of the mitotic Aurora kinase A (AURKA), which promotes breast cancer metastases, failed to restore the invasive capacity of NOTCH3-null cells, demonstrating that NOTCH3 expression is required for an invasive phenotype. Likewise, pharmacologic inhibition of NOTCH signaling also impaired TNBC cell seeding and metastatic growth. Significantly, the role of aberrant NOTCH3 expression in promoting tumor self-renewal, invasiveness, and poor outcome was corroborated in unique TNBC cells from a patient-derived brain metastasis and in publicly available claudin-low breast tumor specimens. Conclusions: These findings demonstrate the key role of NOTCH3 oncogenic signaling in the genesis of breast cancer metastasis and provide a compelling preclinical rationale for the design of novel therapeutic strategies that will selectively target NOTCH3 to halt metastatic seeding and to improve the clinical outcomes of patients with breast cancer

    Protein domain-based approaches for the identification and prioritization of therapeutically actionable cancer variants

    Get PDF
    The tremendous number of cancer variants that can be detected by NGS analyses has required the development of computational approaches to prioritize mutations on the basis of their biological and clinical significance. Standard strategies take a gene-centric approach to the problem, allowing exclusively the identification of highly frequent variants. On the contrary, protein domain (PD)-based approaches allow to identify functionally relevant low frequency variants by searching for mutations that recur on analogous residues across homologous proteins (i.e. containing the same PD). Such approaches enable to transfer information about the effects and druggability from one known mutation to unknown ones. Here we describe how PD-based strategies work, and discuss how they could be exploited for mutation prioritization. The principle that mutations clustered on specific residues of PDs have the same functional consequences and are therapeutically actionable in a similar manner could help the choice of patient-specific targeted drugs, eventually improving the management of cancer patients

    A novel variant of VEGFR2 identified by a pan-cancer screening of recurrent somatic mutations in the catalytic domain of tyrosine kinase receptors enhances tumor growth and metastasis

    Get PDF
    In cancer genomics, recurrence of mutations in gene families that share homologous domains has recently emerged as a reliable indicator of functional impact and can be exploited to reveal the pro-oncogenic effect of previously uncharacterized variants. Pan-cancer analyses of mutation hotspots in the catalytic domain of a subset of tyrosine kinase receptors revealed that two infrequent mutations of VEGFR2 (R1051Q and D1052N) recur in analogous proteins and correlate with reduced patient survival. Functional validation showed that both R1051Q and D1052N mutations increase the enzymatic activity of VEGFR2. The expression of VEGFR2R1051Q potentiates the PI3K/Akt signaling axis in cancer cells, increasing their tumorigenic potential in vitro and in vivo. In addition, it confers to cancer cells an increased sensitivity to the VEGFR2-targeted tyrosine kinase inhibitor Linifanib. In the context of an efficacious application of anti-cancer targeted therapies, these findings indicate that the screening for uncharacterized mutations, like VEGFR2R1051Q, may help to predict patient prognosis and drug response, with significant clinical implications

    Expression of activated VEGFR2 by R1051Q mutation alters the energy metabolism of Sk-Mel-31 melanoma cells by increasing glutamine dependence

    Get PDF
    Vascular endothelial growth factor receptor 2 (VEGFR2) activating mutations are emerging as important oncogenic driver events. Understanding the biological implications of such mutations may help to pinpoint novel therapeutic targets. Here we show that activated VEGFR2 via the pro-oncogenic R1051Q mutation induces relevant metabolic changes in melanoma cells. The expression of VEGFR2R1051Q leads to higher energy metabolism and ATP production compared to control cells expressing VEGFR2WT. Furthermore, activated VEGFR2R1051Q augments the dependence on glutamine (Gln) of melanoma cells, thus increasing Gln uptake and their sensitivity to Gln deprivation and to inhibitors of glutaminase, the enzyme initiating Gln metabolism by cells. Overall, these results highlight Gln addiction as a metabolic vulnerability of tumors harboring the activating VEGFR2R1051Q mutation and suggest novel therapeutic approaches for those patients harboring activating mutations of VEGFR2
    corecore