40 research outputs found

    PromptIR: Prompting for All-in-One Blind Image Restoration

    Full text link
    Image restoration involves recovering a high-quality clean image from its degraded version. Deep learning-based methods have significantly improved image restoration performance, however, they have limited generalization ability to different degradation types and levels. This restricts their real-world application since it requires training individual models for each specific degradation and knowing the input degradation type to apply the relevant model. We present a prompt-based learning approach, PromptIR, for All-In-One image restoration that can effectively restore images from various types and levels of degradation. In particular, our method uses prompts to encode degradation-specific information, which is then used to dynamically guide the restoration network. This allows our method to generalize to different degradation types and levels, while still achieving state-of-the-art results on image denoising, deraining, and dehazing. Overall, PromptIR offers a generic and efficient plugin module with few lightweight prompts that can be used to restore images of various types and levels of degradation with no prior information on the corruptions present in the image. Our code and pretrained models are available here: https://github.com/va1shn9v/PromptI

    Striking the Right Balance with Uncertainty

    Full text link
    Learning unbiased models on imbalanced datasets is a significant challenge. Rare classes tend to get a concentrated representation in the classification space which hampers the generalization of learned boundaries to new test examples. In this paper, we demonstrate that the Bayesian uncertainty estimates directly correlate with the rarity of classes and the difficulty level of individual samples. Subsequently, we present a novel framework for uncertainty based class imbalance learning that follows two key insights: First, classification boundaries should be extended further away from a more uncertain (rare) class to avoid overfitting and enhance its generalization. Second, each sample should be modeled as a multi-variate Gaussian distribution with a mean vector and a covariance matrix defined by the sample's uncertainty. The learned boundaries should respect not only the individual samples but also their distribution in the feature space. Our proposed approach efficiently utilizes sample and class uncertainty information to learn robust features and more generalizable classifiers. We systematically study the class imbalance problem and derive a novel loss formulation for max-margin learning based on Bayesian uncertainty measure. The proposed method shows significant performance improvements on six benchmark datasets for face verification, attribute prediction, digit/object classification and skin lesion detection.Comment: CVPR 201

    Burstormer: Burst Image Restoration and Enhancement Transformer

    Full text link
    On a shutter press, modern handheld cameras capture multiple images in rapid succession and merge them to generate a single image. However, individual frames in a burst are misaligned due to inevitable motions and contain multiple degradations. The challenge is to properly align the successive image shots and merge their complimentary information to achieve high-quality outputs. Towards this direction, we propose Burstormer: a novel transformer-based architecture for burst image restoration and enhancement. In comparison to existing works, our approach exploits multi-scale local and non-local features to achieve improved alignment and feature fusion. Our key idea is to enable inter-frame communication in the burst neighborhoods for information aggregation and progressive fusion while modeling the burst-wide context. However, the input burst frames need to be properly aligned before fusing their information. Therefore, we propose an enhanced deformable alignment module for aligning burst features with regards to the reference frame. Unlike existing methods, the proposed alignment module not only aligns burst features but also exchanges feature information and maintains focused communication with the reference frame through the proposed reference-based feature enrichment mechanism, which facilitates handling complex motions. After multi-level alignment and enrichment, we re-emphasize on inter-frame communication within burst using a cyclic burst sampling module. Finally, the inter-frame information is aggregated using the proposed burst feature fusion module followed by progressive upsampling. Our Burstormer outperforms state-of-the-art methods on burst super-resolution, burst denoising and burst low-light enhancement. Our codes and pretrained models are available at https:// github.com/akshaydudhane16/BurstormerComment: Accepted at CVPR 202

    Vision models for wide color gamut imaging in cinema

    Get PDF
    Gamut mapping is the problem of transforming the colors of image or video content so as to fully exploit the color palette of the display device where the content will be shown, while preserving the artistic intent of the original content's creator. In particular, in the cinema industry, the rapid advancement in display technologies has created a pressing need to develop automatic and fast gamut mapping algorithms. In this article, we propose a novel framework that is based on vision science models, performs both gamut reduction and gamut extension, is of low computational complexity, produces results that are free from artifacts and outperforms state-of-the-art methods according to psychophysical tests. Our experiments also highlight the limitations of existing objective metrics for the gamut mapping problem

    Gated Multi-Resolution Transfer Network for Burst Restoration and Enhancement

    Full text link
    Burst image processing is becoming increasingly popular in recent years. However, it is a challenging task since individual burst images undergo multiple degradations and often have mutual misalignments resulting in ghosting and zipper artifacts. Existing burst restoration methods usually do not consider the mutual correlation and non-local contextual information among burst frames, which tends to limit these approaches in challenging cases. Another key challenge lies in the robust up-sampling of burst frames. The existing up-sampling methods cannot effectively utilize the advantages of single-stage and progressive up-sampling strategies with conventional and/or recent up-samplers at the same time. To address these challenges, we propose a novel Gated Multi-Resolution Transfer Network (GMTNet) to reconstruct a spatially precise high-quality image from a burst of low-quality raw images. GMTNet consists of three modules optimized for burst processing tasks: Multi-scale Burst Feature Alignment (MBFA) for feature denoising and alignment, Transposed-Attention Feature Merging (TAFM) for multi-frame feature aggregation, and Resolution Transfer Feature Up-sampler (RTFU) to up-scale merged features and construct a high-quality output image. Detailed experimental analysis on five datasets validates our approach and sets a state-of-the-art for burst super-resolution, burst denoising, and low-light burst enhancement.Comment: Accepted at CVPR 202

    CycleISP: Real Image Restoration via Improved Data Synthesis

    Full text link
    The availability of large-scale datasets has helped unleash the true potential of deep convolutional neural networks (CNNs). However, for the single-image denoising problem, capturing a real dataset is an unacceptably expensive and cumbersome procedure. Consequently, image denoising algorithms are mostly developed and evaluated on synthetic data that is usually generated with a widespread assumption of additive white Gaussian noise (AWGN). While the CNNs achieve impressive results on these synthetic datasets, they do not perform well when applied on real camera images, as reported in recent benchmark datasets. This is mainly because the AWGN is not adequate for modeling the real camera noise which is signal-dependent and heavily transformed by the camera imaging pipeline. In this paper, we present a framework that models camera imaging pipeline in forward and reverse directions. It allows us to produce any number of realistic image pairs for denoising both in RAW and sRGB spaces. By training a new image denoising network on realistic synthetic data, we achieve the state-of-the-art performance on real camera benchmark datasets. The parameters in our model are ~5 times lesser than the previous best method for RAW denoising. Furthermore, we demonstrate that the proposed framework generalizes beyond image denoising problem e.g., for color matching in stereoscopic cinema. The source code and pre-trained models are available at https://github.com/swz30/CycleISP.Comment: CVPR 2020 (Oral
    corecore